homehome Home chatchat Notifications


Nano-probes sniff out cancer using their nucleic acids

In the new technique, nanotechnology is used to determine whether a specific target nucleic acid sequence exists within a mixture, and to quantify it if it does through a simple electronic signature.

Alexandru Micu
February 20, 2016 @ 2:09 am

share Share

Fighting cancer with nanotechnology seems to be the theme of the day, as researchers from Wake Forest Baptist Medical Center develop new technology that could detect the disease early on. Their miniaturized probes can check a sample for nucleic acids belonging to any known pathogen or malign cells.

In the new technique, nanotechnology is used to determine whether a specific target nucleic acid sequence exists within a mixture, and to quantify it if it does through a simple electronic signature.

DNA Molecule display at Oxford University. Image via flikr @ allispossible.org.uk

DNA Molecule display at Oxford University.
Image via flikr @ allispossible.org.uk

“If the sequence you are looking for is there, it forms a double helix with a probe we provide and you see a clear signal. If the sequence isn’t there, then there isn’t any signal. By simply counting the number of signals, you can determine how much of the target is around,” says Adam R. Hall, Ph.D., assistant professor of biomedical engineering and lead author of the study.

While there are countless nucleic acids that we know of, they’re all built using the same blocks. Like words and letters, these acids are made of simple bases strewn together. They can range in size from a few to a few millions, but their order is set by their function. The Wake Forest researchers are basing their findings on this assumption that cell and tissue activity can be predicted solely by nucleic acids.

One type of nucleic acids, known as microRNAs, usually about 20 bases long, has caught the team’s interest as they could be used to screen for conditions like cancer.

“Scientists have studied microRNA biomarkers for years, but one problem has been accurate detection because they are so short, many technologies have real difficulty identifying them,” Hall adds.

The team first demonstrated that their technology could target a specific sequence of nucleic acids, and then applied their technique to one particular microRNA (mi-R155) known to indicate lung cancer in humans. Their probes were able to pick up on the tiny amounts of microRNAs in their patient’s bloodstream.

The Wake forest team now plans to test their technology on clinical samples of tissue, blood or urine. After they find out how to get the best results from their probes, they hope it will help detect virtually any pathogen known today.

“We envision this as a potential first-line, noninvasive diagnostic to detect anything from cancer to the Ebola virus,” Hall concludes

“Although we are certainly at the early stages of the technology, eventually we could perform the test using a few drops of blood from a simple finger prick.”

The full paper, titled “Sequence-Specific Recognition of MicroRNAs and Other Short Nucleic Acids with Solid-State Nanopores,” has been published online in the journal Nano Letters

share Share

AI 'Reanimated' a Murder Victim Back to Life to Speak in Court (And Raises Ethical Quandaries)

AI avatars of dead people are teaching courses and testifying in court. Even with the best of intentions, the emerging practice of AI ‘reanimations’ is an ethical quagmire.

This Rare Viking Burial of a Woman and Her Dog Shows That Grief and Love Haven’t Changed in a Thousand Years

The power of loyalty, in this life and the next.

This EV Battery Charges in 18 Seconds and It’s Already Street Legal

RML’s VarEVolt battery is blazing a trail for ultra-fast EV charging and hypercar performance.

This new blood test could find cancerous tumors three years before any symptoms

Imagine catching cancer before symptoms even appear. New research shows we’re closer than ever.

DARPA Just Beamed Power Over 5 Miles Using Lasers and Used It To Make Popcorn

A record-breaking laser beam could redefine how we send power to the world's hardest places.

Why Do Some Birds Sing More at Dawn? It's More About Social Behavior Than The Environment

Study suggests birdsong patterns are driven more by social needs than acoustics.

Nonproducing Oil Wells May Be Emitting 7 Times More Methane Than We Thought

A study measured methane flow from more than 450 nonproducing wells across Canada, but thousands more remain unevaluated.

CAR T Breakthrough Therapy Doubles Survival Time for Deadly Stomach Cancer

Scientists finally figured out a way to take CAR-T cell therapy beyond blood.

The Sun Will Annihilate Earth in 5 Billion Years But Life Could Move to Jupiter's Icy Moon Europa

When the Sun turns into a Red Giant, Europa could be life's final hope in the solar system.

Ancient Roman ‘Fast Food’ Joint Served Fried Wild Songbirds to the Masses

Archaeologists uncover thrush bones in a Roman taberna, challenging elite-only food myths