homehome Home chatchat Notifications


Genetic probe flares cancer directly in the blood stream

The Nanoflare technology uses a genetic-based approach to detect and image live cancer cells present in the blood stream, well before these had a chance to develop into a tumor. The gene-hunting particles developed at Northwestern University might help doctors develop personalized treatments for their patients and curb cancer spread, according to the paper published […]

Tibi Puiu
November 20, 2014 @ 3:44 pm

share Share

The Nanoflare technology uses a genetic-based approach to detect and image live cancer cells present in the blood stream, well before these had a chance to develop into a tumor. The gene-hunting particles developed at Northwestern University might help doctors develop personalized treatments for their patients and curb cancer spread, according to the paper published in PNAS.

Hunting cancer’s genes

NanoFlares light up (red clouds) individual cells if a cancer (in this study, breast cancer) biomarker (messenger RNA, blue) is detected by recognition DNA (green) molecules coated on gold nanospheres and containing a fluorescent chemical (red) reporter flare (credit: Tiffany L. Halo et al./PNAS)

NanoFlares light up (red clouds) individual cells if a cancer (in this study, breast cancer) biomarker (messenger RNA, blue) is detected by recognition DNA (green) molecules coated on gold nanospheres and containing a fluorescent chemical (red) reporter flare (credit: Tiffany L. Halo et al./PNAS)

We’ve heard about nanoparticles that bind to cancer cells and mark these for detection, but Nanoflare works fundamentally different. Each Nanoflare is a tiny spherical nucleic acid with a gold nanoparticle core outfitted with single-stranded DNA “flares”. While conventional cancer nanoparticles bind to particles on the cancer cell’s surface, the new approach tracks tumor cells by recognizing a specific genetic code. But first the core nanoparticle, only 13 nanometers across, enters the cell, healthy or not. Once inside, if the specific genetic code is found inside, the Nanoflare binds to the target and lights up – it releases a powerful florescent signal. Easily visible, the researchers can then isolate the cells in question, culture them and apply various treatments to see which one works best. Once the doctors know which is the key treatment, they then serve it to the patient. Nanoflare was specifically designed for breast cancer, but the authors note it could be applied for other forms as well.

“This technology has the potential to profoundly change the way breast cancer in particular and cancers in general are both studied and treated,” said Chad A. Mirkin, PhD, a noted nanomedicine expert and a corresponding author of the study.

“Cancers are very genetically diverse, and it’s important to know what cancer subtype a patient has,” Mirkin said. “Now you can think about collecting a patient’s cells and studying how those cells respond to different therapies. The way a patient responds to treatment depends on the genetic makeup of the cancer.”

What’s truly groundbreaking about Nanoflare is that it can detect cancer cells in the blood stream. When the technique was tested with four different NanoFlares, each with a different genetic target relevant to breast cancer metastasis, cancer cells were detected with less than 1 percent incidence of false-negative results.

“When it comes to detecting and treating cancer, the mantra is the earlier, the better,” Thaxton said. “This technology may enable us to better detect circulating cancer cells and provides another tool to add to the toolkit of cancer diagnosis.”

Via KurzweilAI

share Share

New Liquid Uranium Rocket Could Halve Trip to Mars

Liquid uranium rockets could make the Red Planet a six-month commute.

Scientists think they found evidence of a hidden planet beyond Neptune and they are calling it Planet Y

A planet more massive than Mercury could be lurking beyond the orbit of Pluto.

People Who Keep Score in Relationships Are More Likely to End Up Unhappy

A 13-year study shows that keeping score in love quietly chips away at happiness.

NASA invented wheels that never get punctured — and you can now buy them

Would you use this type of tire?

Does My Red Look Like Your Red? The Age-Old Question Just Got A Scientific Answer and It Changes How We Think About Color

Scientists found that our brains process colors in surprisingly similar ways.

Why Blue Eyes Aren’t Really Blue: The Surprising Reason Blue Eyes Are Actually an Optical Illusion

What if the piercing blue of someone’s eyes isn’t color at all, but a trick of light?

Meet the Bumpy Snailfish: An Adorable, Newly Discovered Deep Sea Species That Looks Like It Is Smiling

Bumpy, dark, and sleek—three newly described snailfish species reveal a world still unknown.

Scientists Just Found Arctic Algae That Can Move in Ice at –15°C

The algae at the bottom of the world are alive, mobile, and rewriting biology’s rulebook.

A 2,300-Year-Old Helmet from the Punic Wars Pulled From the Sea Tells the Story of the Battle That Made Rome an Empire

An underwater discovery sheds light on the bloody end of the First Punic War.

Scientists Hacked the Glue Gun Design to Print Bone Scaffolds Directly into Broken Legs (And It Works)

Researchers designed a printer to extrude special bone grafts directly into fractures during surgery.