homehome Home chatchat Notifications


Survey reveals how dark energy expanded and shaped the Universe

Encompassing years worth of work, the  Sloan Digital Sky Survey (SDSS-III) has now precisely measured the distance between over a quarter of a million galaxies. As part of the project, called the Baryon Oscillation Spectroscopic Survey, or BOSS, scientists built a massive map of all the studied galaxies so far, some more than six billion years ago […]

Tibi Puiu
April 4, 2012 @ 7:45 am

share Share

The 2.5m Sloan telescope at Apache Point Observatory. (c) SDSS

The 2.5m Sloan telescope at Apache Point Observatory. (c) SDSS

Encompassing years worth of work, the  Sloan Digital Sky Survey (SDSS-III) has now precisely measured the distance between over a quarter of a million galaxies. As part of the project, called the Baryon Oscillation Spectroscopic Survey, or BOSS, scientists built a massive map of all the studied galaxies so far, some more than six billion years ago – a period that marks a tipping point in the Universe’s history. Around this time, matter became so spread out that gravity wasn’t enough to slow down the Universe’s attraction, and instead dark energy took over causing the Universe to begin an accelerated expansion process which continues to this day. Dark energy is still a huge mystery even to the most enlightened astrophysicists, however what makes the  Baryon Oscillation Spectroscopic Survey extremely exciting so far is that it confirms the theoretical models proposed.

Scientists claim that dark energy accounts for 73% of all the mass-energy in the universe. That’s a massive proportion, considering that dark energy is still just that thing, expressed in cosmological constants in mathematical models. Understanding dark energy, thus, becomes a key prerequisite to holistically understanding the Universe.

“There’s been a lot of talk about using galaxy maps to find out what’s causing accelerating expansion,” says David Schlegel of the Lawrence Berkeley National Laboratory.

“We’ve been making a map, and now we’re using it – starting to push our knowledge out to the distances when dark energy turned on.

The BOSS project was centered around the fascinating  baryon acoustic oscillations. These sound waves were emitted some 30,000 years after the Big Bang and then continued to oscillated throughout for some 350,000 years, when the Universe cooled down and hampered their propagation. Matter clustered around the center and edges of the wave, basically guiding galaxies to form in those areas.

The Sloan Digital Sky Survey found that these galaxies were found to be almost at the exact location predicted by the model, helping scientists measure how fast the Universe was expanding six billion years ago, to an accuracy of two percent.

Besides providing highly accurate measurements of the distances between galaxies, the BOSS also serves as a great experiment for testing Einstein’s Theory of Relativity.

“Since gravity attracts, galaxies at the edges of galaxy clusters fall in toward the centres of the clusters,” says Beth Reid, a NASA Hubble Fellow at Lawrence Berkeley National Laboratory.

“General Relativity predicts just how fast they should be falling. If our understanding of General Relativity is incomplete, we should be able to tell from the shapes we see in BOSS’s maps near known galaxy clusters.”

The rate at which galaxies fall into clusters, however, is well consistent with Einstein’s predictions, thus providing another sound proof debunking General Relativity naysayers.

“We already knew that the predictions of General Relativity are extremely accurate for distances within the solar system,” says Reid, “and now we can say that they are accurate for distances of 100 million light-years.

We’re looking a billion times further away than Einstein looked when he tested his theory, but it still seems to work.”

The survey is still a long way from being finished, as only a third of it was completed thus far. As scientists map the Universe at an even greater scale and dwell deeper, billions of light years farther, the Universe’s secrets will come closer to becoming unraveled.

The findings were published in the journal Cosmology and Extragalactic Astrophysics.

[via io9]

share Share

We can still easily get AI to say all sorts of dangerous things

Jailbreaking an AI is still an easy task.

A small, portable test could revolutionize how we diagnose Alzheimer's

A passive EEG scan could spot memory loss before symptoms begin to show.

Scientists Solved a Key Mystery Regarding the Evolution of Life on Earth

A new study brings scientists closer to uncovering how life began on Earth.

Humans made wild animals smaller and domestic animals bigger. But not all of them

Why are goats and sheep so different?

Could AI and venom help us fight antibiotic resistance?

Scientists used AI to mine animal venom for potent new antibiotics.

They're 80,000 Years Old and No One Knows Who Made Them. Are These the World's Oldest Arrowheads?

Stone tips found in Uzbekistan could rewrite the history of bows and arrows.

This Chihuahua Munched on a Bunch of Cocaine (and Fentanyl) and Lived to Tell the Tale

This almost-tragic event could have a very useful side.

Global Farmlands Already Grow Enough Food to Feed 15 Billion People but Half of Calories Never Make It to our Plates

Nearly half of the world’s food calories go to animals and engines instead of people.

Does a short nap actually boost your brain? Here's what the science says

We’ve all faced the feeling at some point. When the afternoon slump hits, your focus drifts and your eyelids start to drop; it’s tiring just to stay awake and you can’t fully refocus no matter how hard you try. Most of us simply power through, either with coffee or sheer will. But increasingly, research suggests […]

Scientists Master the Process For Better Chocolate and It’s Not in the Beans

Researchers finally control the fermentation process that can make or break chocolate.