homehome Home chatchat Notifications


'Heart-glove' fitted with stretchy electronics may replace pacemakers

Exploiting both the latest in 3D printing and stretchable electronics, scientists at University of Illinois at Urbana-Champaign and Washington University in St. Louis have devised a new electronic membrane that could replace pacemakers. The membrane is designed to ‘cloth’ the heart and constantly delver electrical shocks to maintain a constant heart beat rate, avoiding arrhythmia and minimizing […]

Tibi Puiu
March 4, 2014 @ 12:38 pm

share Share

Custom-fitted membrane expands and contracts with the heart, and could one day deliver electric shocks in response to a heart attack. (c) NATURE COMMUNICATONS

Custom-fitted membrane expands and contracts with the heart, and could one day deliver electric shocks in response to a heart attack. (c) NATURE COMMUNICATONS

Exploiting both the latest in 3D printing and stretchable electronics, scientists at University of Illinois at Urbana-Champaign and Washington University in St. Louis have devised a new electronic membrane that could replace pacemakers. The membrane is designed to ‘cloth’ the heart and constantly delver electrical shocks to maintain a constant heart beat rate, avoiding arrhythmia and minimizing heart attack risks.

Similar ideas have  been proposed since the early 1980s so genuinely, the concept isn’t entirely novel. However, these pioneering earlier models stood no chance at being practical, since the crude fabrics with bulky electronics sowed directly onto the membrane  interfered directly with the heart and did more harm than good.

This new design is like a spider-web network of sensors and electrodes, all built-on a flexible membrane using 3-D printing. Because everything is custom designed according to the patient’s needs, it all fits like a glove. The real stroke of genius, however, lies in the use of stretchable electronics. John Rogers, a materials scientists from the University of Illinois, was responsible for this aspect and while the electronic components (sensors, electrodes ) themselves are made out of conventional rigid materials (like silicon), the circuits are laid out in curved, s-shaped design that allows them to stretch and bend without breaking.

“When it senses such a catastrophic event as a heart attack or arrhythmia, it can also apply a high definition therapy,” said biomedical engineer Igor Efimov of Washington University, who helped design and test the device.

“It can apply stimuli, electrical stimuli, from different locations on the device in an optimal fashion to stop this arrhythmia and prevent sudden cardiac death,” Efimov said.

The researchers liken the heart glove to the  pericardium itself – the heart’s membrane – as the device senses and interacts with the heart in different ways that are relevant to clinical cardiology.  A prototype membrane was fitted to a rabbit’s heart, keeping the organ operating perfectly “outside of the body in a nutrient and oxygen-rich solution”.

High resolution 3D imaging was used to scan the rabbit's heart and create a mold. (c) NATURE COMMUNICATIONS

High resolution 3D imaging was used to scan the rabbit’s heart and create a mold. (c) NATURE COMMUNICATIONS

Impressive, by all means, but for the moment the device will remain a research tool. It’s still uncertain when this solution, either stand alone or integrated part of another system, would become available for heart treatments.

The research is published in the journal Nature Communications.

share Share

This Rare Viking Burial of a Woman and Her Dog Shows That Grief and Love Haven’t Changed in a Thousand Years

The power of loyalty, in this life and the next.

This EV Battery Charges in 18 Seconds and It’s Already Street Legal

RML’s VarEVolt battery is blazing a trail for ultra-fast EV charging and hypercar performance.

This new blood test could find cancerous tumors three years before any symptoms

Imagine catching cancer before symptoms even appear. New research shows we’re closer than ever.

DARPA Just Beamed Power Over 5 Miles Using Lasers and Used It To Make Popcorn

A record-breaking laser beam could redefine how we send power to the world's hardest places.

Why Do Some Birds Sing More at Dawn? It's More About Social Behavior Than The Environment

Study suggests birdsong patterns are driven more by social needs than acoustics.

Nonproducing Oil Wells May Be Emitting 7 Times More Methane Than We Thought

A study measured methane flow from more than 450 nonproducing wells across Canada, but thousands more remain unevaluated.

CAR T Breakthrough Therapy Doubles Survival Time for Deadly Stomach Cancer

Scientists finally figured out a way to take CAR-T cell therapy beyond blood.

The Sun Will Annihilate Earth in 5 Billion Years But Life Could Move to Jupiter's Icy Moon Europa

When the Sun turns into a Red Giant, Europa could be life's final hope in the solar system.

Ancient Roman ‘Fast Food’ Joint Served Fried Wild Songbirds to the Masses

Archaeologists uncover thrush bones in a Roman taberna, challenging elite-only food myths

A Man Lost His Voice to ALS. A Brain Implant Helped Him Sing Again

It's a stunning breakthrough for neuroprosthetics