homehome Home chatchat Notifications


Breakthrough: first time monolayer graphene made in bulk

We’ve written extensively about graphene here on ZME Science, awarding it much praise and promise. Truly, if you read a bit about what graphene can do [strength, conductivity, cost, etc], you’ll soon learn to love it. So, why aren’t we seeing graphene used everywhere, from computers to aerospace like so many science papers herald its […]

Tibi Puiu
April 7, 2014 @ 10:57 am

share Share

Image: Samsung Advanced Institute of Technology & Sungkyunkwan Universit

Image: Samsung Advanced Institute of Technology & Sungkyunkwan Universit

We’ve written extensively about graphene here on ZME Science, awarding it much praise and promise. Truly, if you read a bit about what graphene can do [strength, conductivity, cost, etc], you’ll soon learn to love it. So, why aren’t we seeing graphene used everywhere, from computers to aerospace like so many science papers herald its potential applications? Well, serious graphene research has only been taking place in the past 15 years or so, which makes it too early for mass scale introduction. One particular challenge relates to exactly this necessity: how to manufacturer quality graphene on a mass scale?

A lab in South Korea, supported by consumer electronics giant Samsung, reports they’ve made one of the biggest breakthroughs in graphene research history after scientists there devised a technique that makes the material inexpensive enough for use in the electronics industry. Bolstering claims aside,  the team at  Sungkyunkwan University’s School of Advanced Materials Science and Engineering and the Samsung Advanced Institute of Technology was able to to make large sheets of graphene by growing it on a layer of specially treated germanium.

Making graphene in bulk

To be more precise, the process starts off with a basic, standard silicon wafer – the kind the electronics industry is all to familiar with. A thin layer of Germanium coating is applied to the wafer, which is then emerged in a dilute hydrofluoric (HF) acid solution. This strips off the  naturally forming germanium oxide groups, only leaving hydrogen atoms that are bonded to the germanium underneath. After a series of vacuum thermal treatments, a fairly common vapor deposition is used to deposit a graphene layer atop the H-germanium one. After another series of baking and cooling in vacuum, graphene begins growing in several places and then joins together, merging several small sheets into one large seamless one; a feat that has been very challenging up until now.

Graphene growing on H-terminated germanium. The orange circles are germanium, the little blue dots are hydrogen, and the black dots are carbon (graphene). Photo: Science

Graphene growing on H-terminated germanium. The orange circles are germanium, the little blue dots are hydrogen, and the black dots are carbon (graphene). Photo: Science

Ultimately, it all winds up to peeling off the graphene monolayer monocrystals from the wafer and tada! Concerning quality, the researchers involved say the resulting material is of high quality and low defects. In addition, because a dry process was used, the germanium and silicon wafer can be reused. Currently, the most popular method of producing graphene is on a copper substrate, which is then wastefully burnt away with acid.

Graphene is often touted for its potential to replace silicon in computer chips, which would allow for faster, more efficient computing. But it is also a major candidate for displays — which generally rely on indium tin oxide — because graphene is just an atom thick, transparent and ultra-tough.

[ALSO READ] The Graphene transistor

Before graphene can be used properly to its full potential in electronics, however, scientists need to figure out a way to give it a bandgap [which it doesn’t have in native form], else it can’t be used to make transistors – the backbone of computer chips. According to Samsung, researchers used their graphene manufacturing technique to build some field-effect transistors (GFETs), which performed quite well. For now, that’s about it, but future advancements coupled with this latest manufacturing process, might finally usher in the age of graphene – one that we’ll all be glad to enter… in about 10 to 20 years or so.

The findings were reported in a paper published in the journal Science.

share Share

A 2,300-Year-Old Helmet from the Punic Wars Pulled From the Sea Tells the Story of the Battle That Made Rome an Empire

An underwater discovery sheds light on the bloody end of the First Punic War.

Scientists Hacked the Glue Gun Design to Print Bone Scaffolds Directly into Broken Legs (And It Works)

Researchers designed a printer to extrude special bone grafts directly into fractures during surgery.

How Much Does a Single Cell Weigh? The Brilliant Physics Trick of Weighing Something Less Than a Trillionth of a Gram

Scientists have found ingenious ways to weigh the tiniest building blocks of life

The Moon Used to Be Much Closer to Earth. It's Drifting 1.5 Inches Farther From Earth Every Year and It's Slowly Making Our Days Longer

The Moon influences ocean tides – and ocean tides, in some ways, influence the Moon back.

A Long Skinny Rectangular Telescope Could Succeed Where the James Webb Fails and Uncover Habitable Worlds Nearby

A long, narrow mirror could help astronomers detect life on nearby exoplanets

Scientists Found That Bending Ice Makes Electricity and It May Explain Lightning

Ice isn't as passive as it looks.

The Crystal Behind Next Gen Solar Panels May Transform Cancer and Heart Disease Scans

Tiny pixels can save millions of lives and make nuclear medicine scans affordable for both hospitals and patients.

Satellite data shows New York City is still sinking -- and so are many big US cities

No, it’s not because of the recent flooding.

How Bees Use the Sun for Navigation Even on Cloudy Days

Bees see differently than humans, for them the sky is more than just blue.

Scientists Quietly Developed a 6G Chip Capable of 100 Gbps Speeds

A single photonic chip for all future wireless communication.