homehome Home chatchat Notifications


What a worm's brain looks like fired up

These aren't Christmas lights, but the actual neural activity of Caenorhabditis Elegans, a parasitic nematode. The brain imaging was done by researchers at Princeton University, and no worm had to be cut open. Instead, the researchers used a special protein which fluoresces in response to calcium.

Tibi Puiu
January 5, 2016 @ 3:19 pm

share Share

These aren’t Christmas lights, but the actual neural activity of Caenorhabditis Elegans, a parasitic nematode. The brain imaging was done by researchers at Princeton University, and no worm had to be cut open. Instead, the researchers used a special protein which  fluoresces in response to calcium.

c. elegans nematode brain activity

When scientists tap the brain, they’re looking for one prime indicator: electrical activity. When a neuron is active, it fires an action potential which is basically a depolarization made between a neuron’s axon to another neuron it signals to. Now, traditionally neuroscientists use a technique called electrophysiology to study the patterns of neuron electrical activity. It’s precise, yet the analysis is limited to a handful of neurons at a time. A more interesting method exploits the fact that when a neuron is active (again, depolarized), calcium flows into it. Using special dyes (proteins) that fluoresce in response to whether or not they bind to calcium, scientists can monitor these calcium dynamics and in turn the depolarization.

That’s exactly what the Princeton researchers achieved, allowing them to monitor in real time  77 of the nematode’s 302 neurons as they light up. These have been shared in this amazing video, split into four frames. In the upper left, we see the location of the neurons, while the upper right shows a simulation of the calcium signaling which is analogous to neural electrical patterns. In the lower two panels we zoom out: the worm itself (left) and the location of the brain (right).

Using this data, the researchers would like to devise a mathematical model that will allow them to simulate and control the worm’s brain. Previously, other efforts identified how C. elegans can identify magnetic fields, while a more ambitious team from Harvard  targeted laser pulses at the worm’s neurons, and directed it to move in any directions they wanted,  even tricking the worm in thinking there’s food nearby.

share Share

These wolves in Alaska ate all the deer. Then, they did something unexpected

Wolves on an Alaskan island are showing a remarkable adaptation.

This AI Therapy App Told a Suicidal User How to Die While Trying to Mimic Empathy

You really shouldn't use a chatbot for therapy.

This New Coating Repels Oil Like Teflon Without the Nasty PFAs

An ultra-thin coating mimics Teflon’s performance—minus most of its toxicity.

Why You Should Stop Using Scented Candles—For Good

They're seriously not good for you.

People in Thailand were chewing psychoactive nuts 4,000 years ago. It's in their teeth

The teeth Chico, they never lie.

To Fight Invasive Pythons in the Everglades Scientists Turned to Robot Rabbits

Scientists are unleashing robo-rabbits to trick and trap giant invasive snakes

Lab-Grown Beef Now Has Real Muscle Fibers and It’s One Step Closer to Burgers With No Slaughter

In lab dishes, beef now grows thicker, stronger—and much more like the real thing.

From Pangolins to Aardvarks, Unrelated Mammals Have Evolved Into Ant-Eaters 12 Different Times

Ant-eating mammals evolved independently over a dozen times since the fall of the dinosaurs.

Potatoes were created by a plant "love affair" between tomatoes and a wild cousin

It was one happy natural accident.

Quakes on Mars Could Support Microbes Deep Beneath Its Surface

A new study finds that marsquakes may have doubled as grocery deliveries.