homehome Home chatchat Notifications


Macrophages conduct electricity through the heart to keep it beating properly

Wired.

Alexandru Micu
April 21, 2017 @ 3:55 pm

share Share

Macrophages seem to not only help keep the body safe and clean but also make sure it stays very much alive by helping the mammalian heart beat in rhythm, new research reveals.

Colorized scanning electron micrograph of a macrophage.
Image credits NIAID / Flickr.

They’re the champion eaters of our bodies, gulping up pathogens and waste wherever they find them — they’re the macrophages. These white cells play a central part in our immune systems, for which we’re all thankful. But they may play a much more immediately vital role for us than we’ve suspected. Researchers from the Massachusetts General Hospital have discovered that these cells play a central part in regulating cardiac activity by conducting electrical signals through the heart.

“This work opens up a completely new view on electrophysiology; now, we have a new cell type on the map that is involved in conduction,” says senior author Matthias Nahrendorf, a systems biologist at Massachusetts General Hospital, Harvard Medical School.

“Macrophages are famous for sensing their environment and changing their phenotype very drastically, so you can think about a situation where there is inflammation in the heart that may alter conduction, and we now need to look at whether these cells are causally involved in conduction abnormalities.”

Researchers have known for some time now that macrophages can be found in and around hearts battling an infection — cause that’s what they do. But Nahrendorf team found that they still hang around in healthy hearts, in much greater numbers than would be required for simple maintenance or defense. So he and his team set out to understand why.

After performing MRI and electrocardiogram studies on model depleted of macrophages, the team found that the heart was arrhythmic and beat too slowly. By analyzing the heart tissue of a healthy mouse, they found that there’s a high density of macrophage cells at atrioventricular node, which carries electricity from the atria to the heart’s ventricles.

Working with David Milan and Patrick Ellinor, both electrophysiologists at Massachusetts General Hospital, the researchers found that the macrophages extend their membranes between cardiac cells and create pores, known as gap junctions, for electricity to flow through. This helps prepare the heart’s conducting cells (the ‘wiring’) for the next burst of electricity — allowing them to maintain a fast contraction rhythm.

Atrioventricular node with macrophages.

Cardiomyocytes (heart muscle cell, red) densely interspersed with macrophages (green).
Image credits Maarten Hulsmans / Matthias Nahrendorf.

“When we got the first patch clamp data that showed the macrophages in contact with cardiomyoctes were rhythmically depolarizing, that was the moment I realized they weren’t insulating, but actually helping to conduct,” Nahrendorf says.

“This work was very exciting because it was an example of how team science can help to connect fields that are traditionally separated — in this case, immunology and electrophysiology.”

The researchers say that the next step is to see whether macrophages have a hand to play in common conduction abnormalities in the heart. There are potential ties between macrophages and anti-inflammatory drugs, which are widely reported to help with heart disease. If macrophages do play a role in disease, the researchers say it can open up a new line of therapeutics, as these immune cells naturally consume foreign molecules in their presence and are easy to target as a result.

The full paper “Macrophages Facilitate Electrical Conduction in the Heart” has been published in the journal Cell.

share Share

AI 'Reanimated' a Murder Victim Back to Life to Speak in Court (And Raises Ethical Quandaries)

AI avatars of dead people are teaching courses and testifying in court. Even with the best of intentions, the emerging practice of AI ‘reanimations’ is an ethical quagmire.

This Rare Viking Burial of a Woman and Her Dog Shows That Grief and Love Haven’t Changed in a Thousand Years

The power of loyalty, in this life and the next.

This EV Battery Charges in 18 Seconds and It’s Already Street Legal

RML’s VarEVolt battery is blazing a trail for ultra-fast EV charging and hypercar performance.

This new blood test could find cancerous tumors three years before any symptoms

Imagine catching cancer before symptoms even appear. New research shows we’re closer than ever.

DARPA Just Beamed Power Over 5 Miles Using Lasers and Used It To Make Popcorn

A record-breaking laser beam could redefine how we send power to the world's hardest places.

Why Do Some Birds Sing More at Dawn? It's More About Social Behavior Than The Environment

Study suggests birdsong patterns are driven more by social needs than acoustics.

Nonproducing Oil Wells May Be Emitting 7 Times More Methane Than We Thought

A study measured methane flow from more than 450 nonproducing wells across Canada, but thousands more remain unevaluated.

CAR T Breakthrough Therapy Doubles Survival Time for Deadly Stomach Cancer

Scientists finally figured out a way to take CAR-T cell therapy beyond blood.

The Sun Will Annihilate Earth in 5 Billion Years But Life Could Move to Jupiter's Icy Moon Europa

When the Sun turns into a Red Giant, Europa could be life's final hope in the solar system.

Ancient Roman ‘Fast Food’ Joint Served Fried Wild Songbirds to the Masses

Archaeologists uncover thrush bones in a Roman taberna, challenging elite-only food myths