homehome Home chatchat Notifications


Beating human heart cells were grown on a spinach leaf

This "green" technology could help to solve the organ transplant shortage.

Elena Motivans
March 24, 2017 @ 1:36 pm

share Share

Many more people need organ transplants than there are donors available. In the USA alone, more than 100,000 patients are waiting for an organ at any given moment. On average 22 people die every day while waiting for an organ or tissue. Researchers are currently developing methods to grow organs in the lab to make them available for donor-less patients. Human tissue has been grown successfully in the lab. However, one major set-back is that full tissues or organs need a circulatory system that delivers blood and nutrients into the developing tissue. Without a circulatory system, the transplants are limited to a very small size.

The network of blood vessels is so complex that it cannot be bioengineered, not even with 3D printing. A multidisciplinary research team turned to plants, more specifically spinach, to solve this problem. Plants and animals, of course, have very different ways of transporting fluids and other substances but surprisingly, the structure of the transportation tubes is actually very similar. Humans blood vessels and plant veins both have a branching design and the veins of a leaf stripped of plants cells could act as a scaffold for human heart cells. Indeed, the researchers were able to successfully growing beating heart cells on the decellularized spinach leaf.

The veins of a leaf branch in a similar way as human blood vessels (below). Image credits: Roumpf.

Image credits: TheGoose aPrisoner.

How?!

The researchers used a detergent to strip spinach leaves of all of their plant cells. Just the cellulose that forms the vascular structure of the plant remained intact. Cellulose is compatible with the human body and promotes wound healing. This structure was used as a scaffold to grow human heart cells. The heart cells were healthy; they beat and could handle calcium. The researchers flowed liquids and microbeads that are similar in size to human blood cells through the leaf’s veins. The veins were able to transport them. In the future, many spinach leaves could be used to grow multiple layers of healthy heart muscle to treat patients suffering from heart attacks. Some leaves could function as arteries (from the heart) and some as veins (to the heart).

The process of stripping the spinach leaf of its cells. Day 7 shows the completely decellularized leaf. Image credits: Worcester Polytechnic Institute.

Future directions

Other decellularized plants could be used to grow other types of human tissue. The research team successfully removed the cells from other plants, parsley, sweet wormwood, and peanut hairy roots. Different types of plants probably work better for growing different types of tissue. The spinach leaf is probably better for growing tissue with lots of veins, like cardiac tissue. The cylindrical hollow stem of jewelweed could be better to grow arteries. Wood could be useful in engineering bones due to its strength and geometries.

Popeye was on to something. Image credits: Jean Pierre Gallot.

Added bonuses of this plant scaffold are that it’s cheaper and better for the environment than synthetic materials. It can be made with the patient’s own cells so that it is compatible. However, it is not sure yet how the transplant will be integrated into the human circulatory system and whether there would be an immune response. More work needs to be done before it can be used in actual transplants. In any case, this new advancement that is a creative fusion of human and plant biology.

Journal reference: Joshua R. Gershlak et al. 2017. Crossing kingdoms: Using decellularized plants as perfusable tissue engineering scaffolds, Biomaterials.

 

 

share Share

Millions Of Users Are Turning To AI Jesus For Guidance And Experts Warn It Could Be Dangerous

AI chatbots posing as Jesus raise questions about profit, theology, and manipulation.

Can Giant Airbags Make Plane Crashes Survivable? Two Engineers Think So

Two young inventors designed an AI-powered system to cocoon planes before impact.

First Food to Boost Immunity: Why Blueberries Could Be Your Baby’s Best First Bite

Blueberries have the potential to give a sweet head start to your baby’s gut and immunity.

Ice Age People Used 32 Repeating Symbols in Caves Across the World. They May Reveal the First Steps Toward Writing

These simple dots and zigzags from 40,000 years ago may have been the world’s first symbols.

NASA Found Signs That Dwarf Planet Ceres May Have Once Supported Life

In its youth, the dwarf planet Ceres may have brewed a chemical banquet beneath its icy crust.

Nudists Are Furious Over Elon Musk's Plan to Expand SpaceX Launches in Florida -- And They're Fighting Back

A legal nude beach in Florida may become the latest casualty of the space race

A Pig Kidney Transplant Saved This Man's Life — And Now the FDA Is Betting It Could Save Thousands More

A New Hampshire man no longer needs dialysis thanks to a gene-edited pig kidney.

The Earliest Titanium Dental Implants From the 1980s Are Still Working Nearly 40 Years Later

Longest implant study shows titanium roots still going strong decades later.

Common Painkillers Are Also Fueling Antibiotic Resistance

The antibiotic is only one factor creating resistance. Common painkillers seem to supercharge the process.

New Liquid Uranium Rocket Could Halve Trip to Mars

Liquid uranium rockets could make the Red Planet a six-month commute.