homehome Home chatchat Notifications


Beating human heart cells were grown on a spinach leaf

This "green" technology could help to solve the organ transplant shortage.

Elena Motivans
March 24, 2017 @ 1:36 pm

share Share

Many more people need organ transplants than there are donors available. In the USA alone, more than 100,000 patients are waiting for an organ at any given moment. On average 22 people die every day while waiting for an organ or tissue. Researchers are currently developing methods to grow organs in the lab to make them available for donor-less patients. Human tissue has been grown successfully in the lab. However, one major set-back is that full tissues or organs need a circulatory system that delivers blood and nutrients into the developing tissue. Without a circulatory system, the transplants are limited to a very small size.

The network of blood vessels is so complex that it cannot be bioengineered, not even with 3D printing. A multidisciplinary research team turned to plants, more specifically spinach, to solve this problem. Plants and animals, of course, have very different ways of transporting fluids and other substances but surprisingly, the structure of the transportation tubes is actually very similar. Humans blood vessels and plant veins both have a branching design and the veins of a leaf stripped of plants cells could act as a scaffold for human heart cells. Indeed, the researchers were able to successfully growing beating heart cells on the decellularized spinach leaf.

The veins of a leaf branch in a similar way as human blood vessels (below). Image credits: Roumpf.

Image credits: TheGoose aPrisoner.

How?!

The researchers used a detergent to strip spinach leaves of all of their plant cells. Just the cellulose that forms the vascular structure of the plant remained intact. Cellulose is compatible with the human body and promotes wound healing. This structure was used as a scaffold to grow human heart cells. The heart cells were healthy; they beat and could handle calcium. The researchers flowed liquids and microbeads that are similar in size to human blood cells through the leaf’s veins. The veins were able to transport them. In the future, many spinach leaves could be used to grow multiple layers of healthy heart muscle to treat patients suffering from heart attacks. Some leaves could function as arteries (from the heart) and some as veins (to the heart).

The process of stripping the spinach leaf of its cells. Day 7 shows the completely decellularized leaf. Image credits: Worcester Polytechnic Institute.

Future directions

Other decellularized plants could be used to grow other types of human tissue. The research team successfully removed the cells from other plants, parsley, sweet wormwood, and peanut hairy roots. Different types of plants probably work better for growing different types of tissue. The spinach leaf is probably better for growing tissue with lots of veins, like cardiac tissue. The cylindrical hollow stem of jewelweed could be better to grow arteries. Wood could be useful in engineering bones due to its strength and geometries.

Popeye was on to something. Image credits: Jean Pierre Gallot.

Added bonuses of this plant scaffold are that it’s cheaper and better for the environment than synthetic materials. It can be made with the patient’s own cells so that it is compatible. However, it is not sure yet how the transplant will be integrated into the human circulatory system and whether there would be an immune response. More work needs to be done before it can be used in actual transplants. In any case, this new advancement that is a creative fusion of human and plant biology.

Journal reference: Joshua R. Gershlak et al. 2017. Crossing kingdoms: Using decellularized plants as perfusable tissue engineering scaffolds, Biomaterials.

 

 

share Share

Scientists Detect the Most Energetic Neutrino Ever Seen and They Have No Idea Where It Came From

A strange particle traveled across the universe and slammed into the deep sea.

Autism rates in the US just hit a record high of 1 in 31 children. Experts explain why it is happening

Autism rates show a steady increase but there is no simple explanation for a "supercomplex" reality.

A New Type of Rock Is Forming — and It's Made of Our Trash

At a beach in England, soda tabs, zippers, and plastic waste are turning into rock before our eyes.

A LiDAR Robot Might Just Be the Future of Small-Scale Agriculture

Robots usually love big, open fields — but most farms are small and chaotic.

Scientists put nanotattoos on frozen tardigrades and that could be a big deal

Tardigrades just got cooler.

This underwater eruption sent gravitational ripples to the edge of the atmosphere

The colossal Tonga eruption didn’t just shake the seas — it sent shockwaves into space.

50 years later, Vietnam’s environment still bears the scars of war – and signals a dark future for Gaza and Ukraine

When the Vietnam War finally ended on April 30, 1975, it left behind a landscape scarred with environmental damage. Vast stretches of coastal mangroves, once housing rich stocks of fish and birds, lay in ruins. Forests that had boasted hundreds of species were reduced to dried-out fragments, overgrown with invasive grasses. The term “ecocide” had […]

America’s Cornfields Could Power the Future—With Solar Panels, Not Ethanol

Small solar farms could deliver big ecological and energy benefits, researchers find.

Plants and Vegetables Can Breathe In Microplastics Through Their Leaves and It Is Already in the Food We Eat

Leaves absorb airborne microplastics, offering a new route into the food chain.

Explorers Find a Vintage Car Aboard a WWII Shipwreck—and No One Knows How It Got There

NOAA researchers—and the internet—are on the hunt to solve the mystery of how it got there.