homehome Home chatchat Notifications


Computer simulation identifies HIV Achilles Heel, offering new avenue for treatment

It also showcases how powerful computer simulations can be in fighting viruses.

Alexandru Micu
November 10, 2017 @ 5:27 pm

share Share

A team of scientists from the University of Chicago has managed to coax out the secrets of HIV budding, offering a new avenue of combating the frightful virus.

HIV budding.

HIV budding is the last step in the virus’ cycle. From here, it’s off to invade other cells.
Image credits Voth et al., 2017, PNAS / University of Chicago.

HIV seems to have a particular regard for the Trojan horse approach to warfare. The process is known as budding and helps HIV infect cells while staying undetected by the body. After infecting a cell, the virus forces it to form a membrane capsule filled with more of the virus. When full, this capsule is released through “budding” and floats away. Upon contacting another cell, the capsule is allowed through its membrane then promptly falls apart, starting the process anew.

“[Budding is] the final step of seven steps in the HIV life cycle. During budding, immature (noninfectious) HIV pushes itself out of the host CD4 cell. (Noninfectious HIV can’t infect another CD4 cell.) Once outside the CD4 cell, the new HIV releases protease, an HIV enzyme. Protease acts to break up the long protein chains that form the noninfectious virus. The smaller HIV proteins combine to form mature, infectious HIV,” according to the U.S. Department of Health and Human Services.

However, one team of scientists at the University of Chicago is determined to take this weapon away from HIV’s arsenal. Through computer modeling, they were able to clarify previously unknown details about HIV budding. The findings could help us create a novel line of medicine to fight the virus, and offers a novel avenue of viral research in the future.

To gag a virus

It’s previously been determined that a key component of the budding process is a biochemical protein complex called Gag. However, the exact details of budding, as well as the exact structure of the Gag complex have remained largely unexplained. This prevented the development of medicine that could counteract this process.

“For a while now we have had an idea of what the final assembled structure looks like, but all the details in between remained largely unknown,” said Gregory Voth, the Haig P. Papazian Distinguished Service Professor of Chemistry and corresponding author on the paper.

Efforts to get a good image of what the protein complex looks like on a molecular level have sadly been unsuccessful so far. As such, Voth’s team turned to computer modeling to simulate Gag in action, and from there infer its properties and structure.

First, they built their model using known parts of the Gag complex. They then simulated the interactions of this model and the conditions within cells, fine-tuning it to match cellular infrastructure and synthesis capability. Progressive tweaking of the model allowed them to zero in on the most likely configuration of the protein and the process it supports.

The team then ran a battery of tests at the National Institutes of Health and the Howard Hughes Medical Institute Janelia Research Campus, overseen by co-author Jennifer Lippincott-Schwartz, to validate their findings. And it worked.

The findings offer hope that a novel range of medicine can be developed to counteract budding, severely limiting HIV’s ability to spread or remain undetected by the immune system. In concert with methods of boosting white cells’ ability to fight the virus, this could finally produce an effective, sure-fire cure against HIV.

Another exciting element of this study is that the team proved computer simulation can come in and fill the gaps in our understanding of viral mechanisms. In cases where direct observation of molecular processes just doesn’t work, this study offers a powerful precedent.

“The hope is that once you have an Achilles’ heel, you can make a drug to stop Gag accumulation and hopefully arrest the virus’s progression,” Voth says. “It really demonstrates the power of modern computing for simulating viruses.”

Next, the researchers plan to look at the Gag complex in the HIV capsules after budding, he adds.

The paper, “Immature HIV-1 lattice assembly dynamics are regulated by scaffolding from nucleic acid and the plasma membrane,” has been published in the journal Proceedings of the National Academy of Sciences.

share Share

No, RFK Jr, the MMR vaccine doesn’t contain ‘aborted fetus debris’

Jesus Christ.

A Soviet shuttle from the Space Race is about to fall uncontrollably from the sky

A ghost from time past is about to return to Earth. But it won't be smooth.

The world’s largest wildlife crossing is under construction in LA, and it’s no less than a miracle

But we need more of these massive wildlife crossings.

We Know Sugar Is Bad for Your Teeth. What About Artificial Sweeteners?

You’ve heard it a thousand times: sugar is terrible for your teeth. It really is. But are artificial sweeteners actually any better? The short answer? Yes—artificial sweeteners don’t feed the bacteria that cause cavities. But here’s the twist: many of the sugar-free products they’re used in can still damage your teeth in a different way—through […]

The Fat Around Your Thighs Might Be Affecting Your Mental Health

New research finds that where fat is stored—not just how much you have—might shape your mood.

Autism rates in the US just hit a record high of 1 in 31 children. Experts explain why it is happening

Autism rates show a steady increase but there is no simple explanation for a "supercomplex" reality.

Tooth loss is linked to cognitive decline, study in India shows

The connection between tooth loss and cognitive decline may surprise you.

New Quantum Navigation System Promises a Backup to GPS — and It’s 50 Times More Accurate

An Australian startup’s device uses Earth's magnetic field to navigate with quantum precision.

Scientists Rediscover a Lost Piece of Female Anatomy That May Play a Crucial Role in Fertility

Scientists reexamine a forgotten structure near the ovary and discover surprising functions

Japan Plans to Beam Solar Power from Space to Earth

The Sun never sets in space — and Japan has found a way to harness this unlimited energy.