homehome Home chatchat Notifications


Genetically modified fungus wipes out 99% of malaria-carrying mosquitoes

A genetically modified organism could help mankind eradicate malaria.

Tibi Puiu
May 31, 2019 @ 7:07 pm

share Share

Credit: Aedes Albopictus.

Although progress in combating malaria has been phenomenal, the mosquito-borne infectious disease is now on the rise in the most affected countries in Africa. Worldwide, about 220 million people are infected each year by a dangerous parasite that is transmitted to humans through the bites of infected mosquitoes. Naturally, scientists looking to eradicate malaria are finding that stopping its vector — the mosquitoes — is the most effective course of action. In a new study, researchers genetically modified a fungus to produce a spider toxin. Within 45 days, the fungus had killed 99% of mosquitoes capable of carrying malaria without affecting other insects.

The study was conducted inside a “mosquitosphere” — a 6,500-sq-ft (600-square-meter) dummy village in Burkina Faso, complete with plants, water and food sources, homes. The entire fake village was encapsulated in a double layer of mosquito netting in order to prevent any creatures from escaping the habitat.

Researchers at the University of Maryland in the USA and the IRSS research institute in Burkina Faso released 1,500 mosquitoes inside the village, whose numbers quickly soared thanks to the perfect breeding conditions and lack of predators. But then the research team introduced the enhanced fungus, genetically engineered with instructions that produce a toxin found in the venom of a funnel-webs spider native to Australia.

The fungal spores were mixed with sesame oil and wiped on black cotton sheets. When the insects landed on the sheets, they immediately became exposed to the deadly fungus  Within 45 days, there were only 13 mosquitoes left, the authors reported in the journal Science.

No other insects, such as bees, were infected by the fungus. Only certain species of mosquitoes of the Anopheles genus — and only females of those species — can transmit malaria. Malaria is caused by a unicellular parasite called a Plasmodium, which undergoes a series of infection steps before arriving at the mosquito’s salivary gland, from which it ultimately spreads to bitten humans.

“Deployment of transgenic Metarhiziumagainst mosquitoes could (subject to appropriate registration) be rapid, with products that could synergistically integrate with existing chemical control strategies to avert insecticide resistance,” the authors concluded.

These findings suggest that his approach may be effective in controlling the spread of malaria. However, releasing gene-edited creatures into the wild might have unintended consequences, which is why the method needs to be seriously vetted in order to ensure bio-safety. The authors also emphasize that this technology isn’t meant to wipe out mosquitoes but rather to control them and the spread of disease.

Previously, researchers have devised other tricks meant to curb the spread of malaria, including CRISPR gene edits that make mosquitoes less likely to get infected by parasites that cause malaria in humans and even drugs that could make human blood toxic to mosquitoes.

share Share

CAR T Breakthrough Therapy Doubles Survival Time for Deadly Stomach Cancer

Scientists finally figured out a way to take CAR-T cell therapy beyond blood.

The Sun Will Annihilate Earth in 5 Billion Years But Life Could Move to Jupiter's Icy Moon Europa

When the Sun turns into a Red Giant, Europa could be life's final hope in the solar system.

Ancient Roman ‘Fast Food’ Joint Served Fried Wild Songbirds to the Masses

Archaeologists uncover thrush bones in a Roman taberna, challenging elite-only food myths

A Man Lost His Voice to ALS. A Brain Implant Helped Him Sing Again

It's a stunning breakthrough for neuroprosthetics

This Plastic Dissolves in Seawater and Leaves Behind Zero Microplastics

Japanese scientists unveil a material that dissolves in hours in contact with salt, leaving no trace behind.

Women Rate Women’s Looks Higher Than Even Men

Across cultures, both sexes find female faces more attractive—especially women.

AI-Based Method Restores Priceless Renaissance Art in Under 4 Hours Rather Than Months

A digital mask restores a 15th-century painting in just hours — not centuries.

Meet the Dragon Prince: The Closest Known Ancestor to T-Rex

This nimble dinosaur may have sparked the evolution of one of the deadliest predators on Earth.

Your Breathing Is Unique and Can Be Used to ID You Like a Fingerprint

Your breath can tell a lot more about you that you thought.

In the UK, robotic surgery will become the default for small surgeries

In a decade, the country expects 90% of all keyhole surgeries to include robots.