homehome Home chatchat Notifications


Genetically modified fungus wipes out 99% of malaria-carrying mosquitoes

A genetically modified organism could help mankind eradicate malaria.

Tibi Puiu
May 31, 2019 @ 7:07 pm

share Share

Credit: Aedes Albopictus.

Although progress in combating malaria has been phenomenal, the mosquito-borne infectious disease is now on the rise in the most affected countries in Africa. Worldwide, about 220 million people are infected each year by a dangerous parasite that is transmitted to humans through the bites of infected mosquitoes. Naturally, scientists looking to eradicate malaria are finding that stopping its vector — the mosquitoes — is the most effective course of action. In a new study, researchers genetically modified a fungus to produce a spider toxin. Within 45 days, the fungus had killed 99% of mosquitoes capable of carrying malaria without affecting other insects.

The study was conducted inside a “mosquitosphere” — a 6,500-sq-ft (600-square-meter) dummy village in Burkina Faso, complete with plants, water and food sources, homes. The entire fake village was encapsulated in a double layer of mosquito netting in order to prevent any creatures from escaping the habitat.

Researchers at the University of Maryland in the USA and the IRSS research institute in Burkina Faso released 1,500 mosquitoes inside the village, whose numbers quickly soared thanks to the perfect breeding conditions and lack of predators. But then the research team introduced the enhanced fungus, genetically engineered with instructions that produce a toxin found in the venom of a funnel-webs spider native to Australia.

The fungal spores were mixed with sesame oil and wiped on black cotton sheets. When the insects landed on the sheets, they immediately became exposed to the deadly fungus  Within 45 days, there were only 13 mosquitoes left, the authors reported in the journal Science.

No other insects, such as bees, were infected by the fungus. Only certain species of mosquitoes of the Anopheles genus — and only females of those species — can transmit malaria. Malaria is caused by a unicellular parasite called a Plasmodium, which undergoes a series of infection steps before arriving at the mosquito’s salivary gland, from which it ultimately spreads to bitten humans.

“Deployment of transgenic Metarhiziumagainst mosquitoes could (subject to appropriate registration) be rapid, with products that could synergistically integrate with existing chemical control strategies to avert insecticide resistance,” the authors concluded.

These findings suggest that his approach may be effective in controlling the spread of malaria. However, releasing gene-edited creatures into the wild might have unintended consequences, which is why the method needs to be seriously vetted in order to ensure bio-safety. The authors also emphasize that this technology isn’t meant to wipe out mosquitoes but rather to control them and the spread of disease.

Previously, researchers have devised other tricks meant to curb the spread of malaria, including CRISPR gene edits that make mosquitoes less likely to get infected by parasites that cause malaria in humans and even drugs that could make human blood toxic to mosquitoes.

share Share

The Universe’s First “Little Red Dots” May Be a New Kind of Star With a Black Hole Inside

Mysterious red dots may be a peculiar cosmic hybrid between a star and a black hole.

Peacock Feathers Can Turn Into Biological Lasers and Scientists Are Amazed

Peacock tail feathers infused with dye emit laser light under pulsed illumination.

Helsinki went a full year without a traffic death. How did they do it?

Nordic capitals keep showing how we can eliminate traffic fatalities.

Scientists Find Hidden Clues in The Alexander Mosaic. Its 2 Million Tiny Stones Came From All Over the Ancient World

One of the most famous artworks of the ancient world reads almost like a map of the Roman Empire's power.

Ancient bling: Romans May Have Worn a 450-Million-Year-Old Sea Fossil as a Pendant

Before fossils were science, they were symbols of magic, mystery, and power.

These wolves in Alaska ate all the deer. Then, they did something unexpected

Wolves on an Alaskan island are showing a remarkable adaptation.

This AI Therapy App Told a Suicidal User How to Die While Trying to Mimic Empathy

You really shouldn't use a chatbot for therapy.

This New Coating Repels Oil Like Teflon Without the Nasty PFAs

An ultra-thin coating mimics Teflon’s performance—minus most of its toxicity.

Why You Should Stop Using Scented Candles—For Good

They're seriously not good for you.

People in Thailand were chewing psychoactive nuts 4,000 years ago. It's in their teeth

The teeth Chico, they never lie.