homehome Home chatchat Notifications


Twisting DNA into unexpected shapes raises new exciting possibilities

DNA – you either know is as deoxyribonucleic acid, or that stuff that somehow makes us what we are. DNA is the body’s way of storing information about yourself: how the cells arrange in your body, how hereditary material is organized, and how you function. DNA is classically thought of as a distinctive double helix structure, […]

Mihai Andrei
October 12, 2015 @ 4:30 pm

share Share

DNA – you either know is as deoxyribonucleic acid, or that stuff that somehow makes us what we are. DNA is the body’s way of storing information about yourself: how the cells arrange in your body, how hereditary material is organized, and how you function. DNA is classically thought of as a distinctive double helix structure, but coiling it into new shapes could raise interesting new possibilities, a new study has found.

New research shows that DNA coils into crazy shapes. Here, images of tiny DNA looped into a figure-8, frozen and viewed with microscopy (yellow), with a computer simulation of its predicted shape superimposed. (The purple is also a computer simulation)
Credit: Thana Sutthibutpong

In a study published this week in the journal Nature Communications, Dr. Sarah Harris from the University of Leeds suggests that studying these supercoiled DNA shapes could enable us to develop better drugs and treatments, especially treatments that directly affect the DNA, like chemotherapy for example.

“This is because the action of drug molecules relies on them recognizing a specific molecular shape — much like a key fits a particular lock,” Harris said in a statement. “When Watson and Crick described the DNA double helix, they were looking at a tiny part of a real genome, only about one turn of the double helix. Our study looks at DNA on a somewhat grander scale — several hundreds of base pairs — and even this relatively modest increase in size reveals a whole new richness in the behavior of the DNA molecule,” she said, referring to the famous biologists James Watson and Francis Crick who first published a paper on the DNA structure in 1953.

DNA is made of about 3 billion base pairs, and can be spread up to a distance of 1 meter; this potential meter has to coil up inside a cell nucleus – so as you can imagine… it’s coiled up a lot. To understand this process, Harris’ team “manually” coiled DNA, turn by turn, using short circular snippets of DNA made up of thousands of base pairs. What they found was that even small changes in shape can have massive effects

“Even this relatively modest increase in size reveals a whole new richness in the behavior of the DNA molecule,” Harris said.

After they developed these new shapes, they inserted an enzyme called human topoisomerase II alpha which relaxes the coil just like in the human body. This indicates that the longer shapes they obtained mimic the longer coils actually found in the human body. After that, they used special microscopy to visualize their new shapes, while also developing models of them on the computer.

This could not only indicate new features and mechanical properties of DNA, but it could help us better understand how our DNA would react to specific treatments – and design these treatments so that they don’t do anymore damage.

share Share

Dinosaurs Were Doing Just Fine Before the Asteroid Hit

New research overturns the idea that dinosaurs were already dying out before the asteroid hit.

Denmark could become the first country to ban deepfakes

Denmark hopes to pass a law prohibiting publishing deepfakes without the subject's consent.

Archaeologists find 2,000-year-old Roman military sandals in Germany with nails for traction

To march legionaries across the vast Roman Empire, solid footwear was required.

Mexico Will Give U.S. More Water to Avert More Tariffs

Droughts due to climate change are making Mexico increasingly water indebted to the USA.

Chinese Student Got Rescued from Mount Fuji—Then Went Back for His Phone and Needed Saving Again

A student was saved two times in four days after ignoring warnings to stay off Mount Fuji.

The perfect pub crawl: mathematicians solve most efficient way to visit all 81,998 bars in South Korea

This is the longest pub crawl ever solved by scientists.

This Film Shaped Like Shark Skin Makes Planes More Aerodynamic and Saves Billions in Fuel

Mimicking shark skin may help aviation shed fuel—and carbon

China Just Made the World's Fastest Transistor and It Is Not Made of Silicon

The new transistor runs 40% faster and uses less power.

Ice Age Humans in Ukraine Were Masterful Fire Benders, New Study Shows

Ice Age humans mastered fire with astonishing precision.

The "Bone Collector" Caterpillar Disguises Itself With the Bodies of Its Victims and Lives in Spider Webs

This insect doesn't play with its food. It just wears it.