homehome Home chatchat Notifications


Scientists predict age using only a saliva sample

In a recently patented research, UCLA geneticists have shown and demonstrated how they’ve accurately been able to predict a person’s age just by analyzing a saliva sample. The research could possibly find highly welcomed applications in crime scene investigation, as a forensics tool for pinpointing a suspect’s age. “Our approach supplies one answer to the […]

Tibi Puiu
June 30, 2011 @ 9:35 am

share Share

Dr. Eric Vilain. (c) UCLA

Dr. Eric Vilain. (c) UCLA

In a recently patented research, UCLA geneticists have shown and demonstrated how they’ve accurately been able to predict a person’s age just by analyzing a saliva sample. The research could possibly find highly welcomed applications in crime scene investigation, as a forensics tool for pinpointing a suspect’s age.

“Our approach supplies one answer to the enduring quest for reliable markers of aging,” said principal investigator Dr. Eric Vilain, a professor of human genetics, pediatrics and urology at the David Geffen School of Medicine at UCLA. “With just a saliva sample, we can accurately predict a person’s age without knowing anything else about them.”

To achieve this, scientists used a process called methylation – a chemical modification of one of the four building blocks that make up our DNA.

“While genes partly shape how our body ages, environmental influences also can change our DNA as we age,” Vilain said. “Methylation patterns shift as we grow older and contribute to aging-related disease.”

In the first round of testing, researchers sampled saliva from 34 pairs of identical male twins, aged between 21 and 55, whose genome was then analyzed. Scientists identified 88 sites on the DNA that strongly correlated methylation to age. In the second round, they replicated their findings after extending to a general population of 31 men and 29 women between the ages of 18 and 70.

Using two of the three genes with the strongest age-related linkage to methylation, scientists constructed a predictive model which helped them tell the age of a study participant within a range of 5 years, an incredible approximation by today’s standard.

“Methylation’s relationship with age is so strong that we can identify how old someone is by examining just two of the 3 billion building blocks that make up our genome,” said first author Sven Bocklandt, a former UCLA geneticist now at Bioline.

RELATED: The secret to a long life: consciousness

In some people, methylation does not correlate with chronological age. This is because a person’s age is measured in both chronological age and bio-age, which is the true age of a subject. Using data from this particular reserach, scientists might be able to lay the forefront for future accurate bio-age measurements. Medical applications would be both numerous and highly advantageous.

“Doctors could predict your medical risk for a particular disease and customize treatment based on your DNA’s true biological age, as opposed to how old you are,” Vilain said. “By eliminating costly and unnecessary tests, we could target those patients who really need them.”

The UCLA team is currently exploring whether people with a lower bio-age live longer and suffer less disease. They also are examining if the reverse is true — whether a higher bio-age is linked to a greater rate of disease and early death.
The findings can be read in more detail in the June 22 edition of PLoS One, an online journal of the Public Library of Science.

source

share Share

Potatoes were created by a plant "love affair" between tomatoes and a wild cousin

It was one happy natural accident.

The 400-Year-Old, Million-Dollar Map That Put China at the Center of the World

In 1602, the Wanli Emperor of the Ming dynasty had a big task for his scholars: a map that would depict the entire world. The results was a monumental map that would forever change China’s understanding of its place in the world. Known as the Kunyu Wanguo Quantu (坤輿萬國全圖), or A Map of the Myriad […]

Stuttering Has Deep Genetic Roots and May Affect Your Ability to Clap to a Beat

A massive genetic study found that stuttering is not just about nurture and may link to processing rhythm itself.

A New AI Can Spot You by How Your Body Bends a Wi-Fi Signal

You don’t need a phone or camera to be tracked anymore: just wi-fi.

7,000 Steps a Day Keep the Doctor Away

Just 7,000 steps a day may lower your risk of death, dementia, and depression.

Ancient DNA Reveals the Surprising Origins of Attila’s Huns. Genetics Point to an Ancient Mongolian Empire

Ancient DNA traces the Huns' journey from Mongolia to Europe. But this wasn't straightforward.

Scientists transform flossing into needle-free vaccine

In the not-too-distant future, your dentist might do more than remind you to floss—they might vaccinate you, too.

UK Families Welcome First Healthy Babies Born With DNA From Three People

Eight children were born with DNA from three people to prevent a deadly genetic disease.

Ozzy Osbourne’s Genes Really Were Wired for Alcohol and Addiction

His genome held strange secrets: a turbocharged alcohol gene, rewired brain chemistry, and a slow-burn caffeine receptor.

This Ancient Greek City Was Swallowed by the Sea—and Yet Refused to Die

A 3,000-year record of resilience, adaptation, and seismic survival