homehome Home chatchat Notifications


New, tiny device can extract clean DNA material within minutes

The human genome has been sequenced a mere few years ago, and since then a great deal of advancements have been made in the field. This is extremely important since in the future, personalized medicine needs each individual’s genetic markup such that treatment may get the most effective punch or diseases and afflictions might be […]

Tibi Puiu
May 8, 2013 @ 10:55 am

share Share

Hand-held device for extracting DNA. (c) UW/NanoFacture/KNR

Hand-held device for extracting DNA. (c) UW/NanoFacture/KNR

The human genome has been sequenced a mere few years ago, and since then a great deal of advancements have been made in the field. This is extremely important since in the future, personalized medicine needs each individual’s genetic markup such that treatment may get the most effective punch or diseases and afflictions might be avoided altogether.

The DNA sequencing industry is growing rapidly, having turned into a multi-billion dollar industry. Since the turn of the new millennium, however, a lot of companies have seen rapid growth, only to plummet at the hand of counter effective technology.

Collecting and sequencing DNA is still expensive, too expensive for gross use at least. That may soon change. For instance, University of Washington engineers and NanoFacture, a Bellevue, Wash., company, have recently unveiled a small, light-weight device that can allegedly collect viable DNA material for samples in mere minutes, instead of hours – all without risking damaging the DNA itself as is the case with current methods.

“It’s very complex to extract DNA,” said Jae-Hyun Chung, a UW associate professor of mechanical engineering who led the research. “When you think of the current procedure, the equivalent is like collecting human hairs using a construction crane.”

Chung isn’t overreacting at all. Current methods rely on centrifuges and chemical solutions, some of which are toxic, to extract DNA. Micro-filters that strain DNA from the bulk fluid is also commonly used. These methods are slow and expensive, however.

The UW device is comprised of tiny, microscopic probing tips that dip into a fluid sample – saliva, sputum or blood – and apply an electric field within the liquid. The field guides particles towards the surface of the probing tips, however larger ones bounces away while DNA molecules stick. Using this method, it takes only 2-3 minutes to purify and separate DNA. The researchers claim they can scale the technology to analyse 96 samples at a time, which is standard for large-scale handling.

A miniature version, the size and shape of a pen, has also been developed which patients can use to swipe saliva at home and ship them to hospitals where their DNA is readily separated and collected for analysis, without having to leave their homes.

Combined with other recent efforts geared towards cheap sequencing, the technology developed by Chung and colleagues might lend a great hand in the strive to form a huge medical DNA database to battle diseases.

[source University of Washington]

share Share

We can still easily get AI to say all sorts of dangerous things

Jailbreaking an AI is still an easy task.

A small, portable test could revolutionize how we diagnose Alzheimer's

A passive EEG scan could spot memory loss before symptoms begin to show.

Scientists Solved a Key Mystery Regarding the Evolution of Life on Earth

A new study brings scientists closer to uncovering how life began on Earth.

Researchers Discovered How to Trap Cancer Cells by "Reprogramming" Their Environment

Scientists find a way to stop glioblastoma cells by stiffening a key brain molecule

Humans made wild animals smaller and domestic animals bigger. But not all of them

Why are goats and sheep so different?

Could AI and venom help us fight antibiotic resistance?

Scientists used AI to mine animal venom for potent new antibiotics.

They're 80,000 Years Old and No One Knows Who Made Them. Are These the World's Oldest Arrowheads?

Stone tips found in Uzbekistan could rewrite the history of bows and arrows.

This Chihuahua Munched on a Bunch of Cocaine (and Fentanyl) and Lived to Tell the Tale

This almost-tragic event could have a very useful side.

A Single Mutation Made Horses Rideable and Changed Human History

Ancient DNA reveals how a single mutation reshaped both horses and human history.

Global Farmlands Already Grow Enough Food to Feed 15 Billion People but Half of Calories Never Make It to our Plates

Nearly half of the world’s food calories go to animals and engines instead of people.