homehome Home chatchat Notifications


Stunning satellite observations show Tonga eruption effects in unprecedented detail

Not only ashes, but pressure waves affected the atmosphere as well.

Paula Ferreira
January 25, 2022 @ 1:21 pm

share Share

The Hunga Tonga-Hunga Ha‘apai volcano erupted on January 14, causing massive shockwaves and tsunamis that lead to 3 deaths and caused substantial damage to the Tongan Islands. Thanks to satellite imagery, researchers were able to observe this process in stunning detail. Here are some of these observations.

Ashes and cooling

The eruption released vast quantities of aerosols into the atmosphere. These particles reached the stratosphere, some 9 miles (15 km) above the surface. The stratosphere is a dry part of the atmosphere without clouds or humidity — so everything that reaches the stratosphere has little to interact with and is easily observable from above. 

The ashes from volcanoes consist largely of sulfur dioxide; once this sulfur dioxide reaches the atmosphere, it filters out some of the solar rays, producing a cooling effect. This effect can be quite powerful. Nearly 31 years ago, the Pinatubo volcano, in the Philippines, released 15 million tons of sulfur dioxide into the stratosphere. This tremendous amount took about two years to be depleted through chemical reactions, temporarily cooling the atmosphere by about 0.6 °C on average around the globe. 

Pinatubo’s eruption was used as a source of misinformation by climate denialists who wanted to diminish human interference from global warming — a volcanic eruption only produces temporary effects. As a matter of fact, Pinatubo’s effect was predicted by a climate model, which confirmed the predictions from climate models as reliable sources.

Image credits: Japan Meteorology Agency.

The eruption of Hunga Tonga-Hunga Ha‘apai is not as strong as Pinatubo’s, but the ashes will cool the air a little bit. However, it’s important to keep in mind that this won’t have any significant effect on climate change.

Waves

When the volcano sent ashes flying into the air, it caused a disruption in the atmospheric pressure levels. Just like hitting a drum’s membrane, the explosion pushed the air and changed the air pressure globally.

Researchers monitor these pressure changes through instruments called barometers. But because the planet is very big, the sudden change in air pressure due to the eruption took a while to reach different parts of the planet. For instance, it took 15 hours to reach the University of Hertfordshire Observatory in the UK, which is 16,500 km (around 10,253 mi) away from the volcano and it was registered by their barometer.

The propagation of the wave becomes very clear when we piece together a series of barometer detections. This was registered by the United States’ station on January 15:

The eruption was also a source of waves in the atmosphere, sending concentric ripples traveling the planet’s atmosphere as if it is not such a big deal. A stunning animation of the event was produced by theNational Oceanic and Atmospheric Administration (NOAA)’s GOES-West satellite, displaying the waves traveling the atmosphere just after the eruption.

The initial atmospheric response to the eruption was captured by Mathew Barlow using NOAA’s GOES-West satellite infrared radiance data (band 13). This sequence is based on images taken 10 minutes apart, and colors show the difference in infrared radiance between each time step. Credit: Mathew Barlow/University of Massachusetts Lowell.

So where do these waves go? Well, if you’re a flat-earther, this may upset you. Because the Earth is round, the wave travels to the furthest point, until it reaches a point and becomes a wave source itself that travels all the way around again, gradually losing energy until it disappears. 

There were also some “eyewitnesses” of the process. Registered by the Gemini Observatory at Maunakea in Hawaii, the following video shows a bunch of clouds moving normally, but the thin ripples that appear in the sky were caused by the eruption waves.

Never before could we monitor the atmospheric response to events such as this eruption, this is thanks to the number of cameras we have everywhere and better sensors to register the impacts. We didn’t have a fast way to communicate before, in this case, a few hours after the activity was possible for scientists to share their observations and shock everyone on how interactive the Earth system is. Let’s wait for the next crazy atmospheric phenomenon to leave us in awe.

share Share

The Universe’s First “Little Red Dots” May Be a New Kind of Star With a Black Hole Inside

Mysterious red dots may be a peculiar cosmic hybrid between a star and a black hole.

Quakes on Mars Could Support Microbes Deep Beneath Its Surface

A new study finds that marsquakes may have doubled as grocery deliveries.

What if the Secret to Sustainable Cities Was Buried in Roman Cement?

Is Roman concrete more sustainable? It's complicated.

Meet the world's rarest mineral. It was found only once

A single gemstone from Myanmar holds the title of Earth's rarest mineral.

A massive 8.8 earthquake just struck off Russia's coast and it is one of the strongest ever recorded

The earthquake in Kamchatka is the largest worldwide since 2011. Its location has been very seismically active in recent months.

Scientists Analyzed a Dinosaur’s Voice Box. They Found a Chirp, Not a Roar

A new fossil suggests dinosaurs may have sung before birds ever took flight

Athens Is Tapping a 2,000-Year-Old Roman Aqueduct To Help Survive a Megadrought

Sometimes new problems need old solutions.

Tuvalu Is on Track to Become the First Country Lost to Climate Change. More Than 80% of the Population Apply to Relocate to Australia Under World's First 'Climate Visa'

Tuvalu will likely become the first nation to vanish because of climate change.

Pregnancy in Space Sounds Cool Until You Learn What Could Go Wrong

Growing a baby in space sounds like science fiction. Here’s why it might stay that way.

This Is the Oldest Ice on the Planet and It’s About to Be Slowly Melted to Unlock 1.5 Million Years of Climate History

Antarctic ice core may reveal how Earth’s glacial rhythms transformed a million years ago.