homehome Home chatchat Notifications


Cyborg bacteria equipped with tiny solar panels outperform photosynthesis

Trees aren't obsolete yet but this hybrid system can do amazing things.

Tibi Puiu
August 24, 2017 @ 3:00 pm

share Share

All biological processes on Earth rely on the sun for energy. It’s the sun’s rays that allow plants or cyanobacteria to grow. They become lunch for different creatures which in turn are preyed on higher up the food chain. Plants use the energy from incoming photons in a biological process known as photosynthesis, and for all intents and purposes, this is an elegant solution. However, it’s not all that efficient and researchers at the University of California, Berkeley, think they can come up with something better — or at least something different that might work well for some applications.

Artist's rendering of bioreactor (left) loaded with bacteria decorated with cadmium sulfide, light-absorbing nanocrystals (middle) to convert light, water and carbon dioxide into useful chemicals (right). Credit: Kelsey K. Sakimoto.

Artist’s rendering of bioreactor (left) loaded with bacteria decorated with cadmium sulfide, light-absorbing nanocrystals (middle) to convert light, water and carbon dioxide into useful chemicals (right). Credit: Kelsey K. Sakimoto.

At the 254th National Meeting & Exposition of the American Chemical Society (ACS), Kelsey K. Sakimoto and colleagues showed off their latest attempt at harvesting energy with a hybrid system comprised of bacteria and what can only be described as tiny solar panels. Essentially, when the Moorella thermoacetica bacteria, which is nonphotosynthetic, was fed cadmium and the amino acid cysteine, it synthesized the food into cadmium sulfide (CdS) nanoparticles. These are the semiconducting materials many solar panels employ on their surface to collect photons and create electron-hole pairs. 

They then showed that the hybrid system comprised of M. thermoacetica-CdS could make acetic acid from CO2, water, and light. “Once covered with these tiny solar panels, the bacteria can synthesize food, fuels, and plastics, all using solar energy,” Sakimoto said in a statement.

Plants turn CO2, water, and light into oxygen and sugars mainly through chlorophyll, which are the green pigments plants use to harvest sunlight. They’re quite similar to semiconductors employed in solar energy only photovoltaic cells turn all of that sunlight into flowing electrons whereas photosynthetic plant cells turn it into plant food. The problem is photosynthesis doesn’t seem all that efficient. Typically, most plants have a sunlight to biomass conversion of only 0.1%-0.2% whereas some crops see 1-2% efficiency.

The hybrid system, however, operates at an efficiency of more than 80 percent, all in a self-replicating and self-generating environment. “These bacteria outperform natural photosynthesis,” Sakimoto said.

Of course, none of this makes trees and plants obsolete. Given our urgent need to phase off fossil fuels, however, any alternative technology that can generate clean energy or products is more than welcome. Acetic acid, for instance, is a very versatile chemical. It’s widely used in the chemical manufacturing industry to make polymers, pharmaceuticals, even liquid fuels. In fact, you have a 5-20% acetic acid-water solution in your kitchen right now — vinegar. Even among alternative energy systems, such as artificial photosynthesis devices, this bacterial-semiconductor system offers long-standing benefits.

“Many current systems in artificial photosynthesis require solid electrodes, which is a huge cost. Our algal biofuels are much more attractive, as the whole CO2-to-chemical apparatus is self-contained and only requires a big vat out in the sun,” Sakimoto points out.

For now, he and colleagues are working on making the semiconductor and bacteria interact better. They’re also looking at other matches that might render different chemicals or foods.

share Share

This Rare Viking Burial of a Woman and Her Dog Shows That Grief and Love Haven’t Changed in a Thousand Years

The power of loyalty, in this life and the next.

This EV Battery Charges in 18 Seconds and It’s Already Street Legal

RML’s VarEVolt battery is blazing a trail for ultra-fast EV charging and hypercar performance.

DARPA Just Beamed Power Over 5 Miles Using Lasers and Used It To Make Popcorn

A record-breaking laser beam could redefine how we send power to the world's hardest places.

Why Do Some Birds Sing More at Dawn? It's More About Social Behavior Than The Environment

Study suggests birdsong patterns are driven more by social needs than acoustics.

Nonproducing Oil Wells May Be Emitting 7 Times More Methane Than We Thought

A study measured methane flow from more than 450 nonproducing wells across Canada, but thousands more remain unevaluated.

CAR T Breakthrough Therapy Doubles Survival Time for Deadly Stomach Cancer

Scientists finally figured out a way to take CAR-T cell therapy beyond blood.

The Sun Will Annihilate Earth in 5 Billion Years But Life Could Move to Jupiter's Icy Moon Europa

When the Sun turns into a Red Giant, Europa could be life's final hope in the solar system.

Ancient Roman ‘Fast Food’ Joint Served Fried Wild Songbirds to the Masses

Archaeologists uncover thrush bones in a Roman taberna, challenging elite-only food myths

A Man Lost His Voice to ALS. A Brain Implant Helped Him Sing Again

It's a stunning breakthrough for neuroprosthetics

This Plastic Dissolves in Seawater and Leaves Behind Zero Microplastics

Japanese scientists unveil a material that dissolves in hours in contact with salt, leaving no trace behind.