homehome Home chatchat Notifications


Marine sponges inspire stronger, lighter skyscrapers and bridges

Designs that mimic the glassy sponge’s skeletal structure are 20% stronger than traditional structures employed today in engineering.

Tibi Puiu
February 18, 2021 @ 5:30 pm

share Share

Credit: SEAS.

Marine sponges like the Venus’ flower basket (Euplectella aspergillum) look like an otherworldly creature one would expect to find on an alien planet. These glassy sponges resemble vases or sculptures but don’t let their fragile appearance fool you — their skeleton is extremely strong. In fact, the structure is so strong that engineers are now mimicking it for the next generation of stronger and taller buildings, longer bridges, and lighter spacecraft.

Bioinspired architecture

In their new study, which was published today in the journal Nature Materials, researchers at Harvard’s John A. Paulson School of Engineering and Applied Sciences (SEAS) analyzed the skeletal structure of Venus’ flower basket.

Similar to today’s tall skyscrapers or bridges, the sponge’s skeleton is arranged in a diagonally-reinforced square lattice-like structure. However, the lattice has an even higher strength-to-weight ratio than traditional lattice designs employed for centuries in architecture and engineering.

“We found that the sponge’s diagonal reinforcement strategy achieves the highest buckling resistance for a given amount of material, which means that we can build stronger and more resilient structures by intelligently rearranging existing material within the structure,” said Matheus Fernandes, a graduate student at SEAS and first author of the paper.

“In many fields, such as aerospace engineering, the strength-to-weight ratio of a structure is critically important,” said James Weaver, a Senior Scientist at SEAS and one of the corresponding authors of the paper. “This biologically-inspired geometry could provide a roadmap for designing lighter, stronger structures for a wide range of applications.”

Diagonal lattice designs that employ closely spaced diagonal beams enable loads to be more evenly distributed. Since the 1800s, this architecture hasn’t changed very much.

“It gets the job done, but it’s not optimal, leading to wasted or redundant material and a cap on how tall we can build. One of the main questions driving this research was, can we make these structures more efficient from a material allocation perspective, ultimately using less material to achieve the same strength?” said Fernandes.

Venus’ flower basket has a tubular body that is supported by two sets of parallel diagonal skeletal struts. These intersect with each other and are fused to an underlying square grid, forming a checkerboard-like pattern.

Composite rendering that transitions from a glassy sponge skeleton on the left to a welded rebar-based lattice on the right, highlighting the biologically inspired nature of the research. Credit: Image Courtesy of Peter Allen, Ryan Allen, and James C. Weaver/Harvard SEAS  

Mathematical modeling, as well as experiments, showed that replicated designs inspired by the sponge’s skeleton outperformed existing lattice geometries widely employed in the field of engineering. Overall, the structural strength increased by more than 20% — all without the need for additional materials to achieve the same effect.

“Our research demonstrates that lessons learned from the study of sponge skeletal systems can be exploited to build structures that are geometrically optimized to delay buckling, with huge implications for improved material use in modern infrastructural applications,” said Katia Bertoldi, the William and Ami Kuan Danoff Professor of Applied Mechanics at SEAS and a corresponding author of the study.

share Share

Hidden for over a century, a preserved Tasmanian Tiger head "found in a bucket" may bring the lost species back from extinction

Researchers recover vital RNA from Tasmanian tiger, pushing de-extinction closer to reality.

Island Nation Tuvalu Set to Become the First Country Lost to Climate Change. More Than 80% of the Population Apply to Relocate to Australia Under World's First 'Climate Visa'

Tuvalu will likely become the first nation to vanish because of climate change.

Archaeologists Discover 6,000 Year Old "Victory Pits" That Featured Mass Graves, Severed Limbs, and Torture

Ancient times weren't peaceful by any means.

Space Solar Panels Could Cut Europe’s Reliance on Land-Based Renewables by 80 Percent

A new study shows space solar panels could slash Europe’s energy costs by 2050.

A 5,000-Year-Old Cow Tooth Just Changed What We Know About Stonehenge

An ancient tooth reshapes what we know about the monument’s beginnings.

Astronomers See Inside The Core of a Dying Star For the First Time, Confirm How Heavy Atoms Are Made

An ‘extremely stripped supernova’ confirms the existence of a key feature of physicists’ models of how stars produce the elements that make up the Universe.

Rejoice! Walmart's Radioactive Shrimp Are Only a Little Radioactive

You could have a little radioactive shrimp as a treat. (Don't eat any more!)

Newly Found Stick Bug is Heavier Than Any Insect Ever Recorded in Australia

Bigger than a cockroach and lighter than a golf ball, a giant twig emerges from the misty mountains.

Chevy’s New Electric Truck Just Went 1,059 Miles on a Single Charge and Shattered the EV Range Record

No battery swaps, no software tweaks—yet the Silverado EV more than doubled its 493-mile range. How’s this possible?

Dolphins and Whales Can Be Friends and Sometimes Hang Out Together

They have a club and you're not invited.