homehome Home chatchat Notifications


Titan is moving away from Saturn 100 times faster than expected

New findings from NASA’s Cassini space probe challenge our understanding of tidal forces.

Florian Lienert
June 11, 2020 @ 12:48 pm

share Share

Saturn’s moon Titan, an icy world shrouded by a hazy atmosphere, is the second-largest moon in our solar system, nearly 50% larger than the Earth’s moon.

In a new study published in Nature Astronomy, a team of researchers report that Titan may be straying from its planet at a much faster rate than anticipated.

Titan passing in front of Saturn — slowly drifting apart, bit by bit. Image credits: NASA / JPL.

Every moon slowly drifts away from its planet due to tidal forces. The orbiting moon exerts a gravitational pull on the planet as it orbits, creating a temporary bulge as it passes over — this is also the reason why we have high tides and low tides on Earth, for instance.

The planet’s spin sweeps the bulge forward ever so slightly, which in turn pulls on the moon and transfers it into a higher orbit. That way, the moon moves away from the planet ever so slightly each year.

So long, old friend

Previously, scientists had estimated the rate Titan moves away from Saturn to be around 0.1 cm per year. But according to recent data gathered by NASA’s Cassini spacecraft, Titan actually drifts away 100 times faster than expected, at a rate of approximately 11 centimeters each year.

These findings, while contradicting previous predictions, agree with a hypothesis proposed in 2016 by Jim Fuller, Jing Luan, and Eliot Quataert. The researchers proposed a mechanism also observed in binary stars called resonance locking, which could explain the fast migration seen in Saturn’s moon Titan. This is a process where the gravitational force of the moon squeezes the planet and forces it to oscillate. In this case, the orbital motion of Titan lines up with internal motions inside Saturn increasing the efficiency of the tidal forces and leading to a faster migration rate.

This finding also bears significant implications for the formation of Saturn’s rings and moon system (which hosts over 80 moons).

If the speed at which Titan is straying from Saturn is so large now, it implies that it was also larger in the past. This means that Titan, previously thought to have formed at a similar distance from its planet as where it is now, may have formed much closer to Saturn and then migrated outwards. This changes our understanding not only of how Saturn’s rings and moons formed but also interactions in binary star systems, galaxies, and exoplanets in close orbit to their stars.

Now, scientists await more data from the Juno space probe orbiting Jupiter which could validate the theory of resonance locking further.

share Share

Frozen Wonder: Ceres May Have Cooked Up the Right Recipe for Life Billions of Years Ago

If this dwarf planet supported life, it means there were many Earths in our solar system.

Space Solar Panels Could Cut Europe’s Reliance on Land-Based Renewables by 80 Percent

A new study shows space solar panels could slash Europe’s energy costs by 2050.

Astronomers See Inside The Core of a Dying Star For the First Time, Confirm How Heavy Atoms Are Made

An ‘extremely stripped supernova’ confirms the existence of a key feature of physicists’ models of how stars produce the elements that make up the Universe.

Scientists May Have Found a New Mineral on Mars. It Hints The Red Planet Stayed Warm Longer

Scientists trace an enigmatic infrared band to heated, oxygen-altered sulfates.

A Comet That Exploded Over Earth 12,800 Years Ago May Have Triggered Centuries of Bitter Cold

Comet fragments may have sparked Earth’s mysterious 1,400-year cold spell.

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

Bright, polarized, and unseen in any other light — Punctum challenges astrophysical norms.

How Much Has Mercury Shrunk?

Mercury is still shrinking as it cools in the aftermath of its formation; new research narrows down estimates of just how much it has contracted.

First Complete Picture of Nighttime Clouds on Mars

Data captured by the Emirates Mars Mission reveal that clouds are typically thicker during Martian nighttime than daytime.

A Supermassive Black Hole 36 Billion Times the Mass of the Sun Might Be the Heaviest Ever Found

In a massive galaxy, known for its unique visual effect lies an even more massive black hole.

Scientists Have a Plan to Launch a Chip-Sized, Laser-Powered Spacecraft Toward a Nearby Black Hole and Wait 100 Years for It to Send a Signal Home

One scientist thinks we can see what's really in a black hole.