homehome Home chatchat Notifications


Superluminous supernovas explode twice, create some of the most powerful magnets in the universe

When a star is ready to drop the curtain, it goes out with a bang -- a supernova explosion. But some double the bang.

Tibi Puiu
August 10, 2016 @ 1:41 pm

share Share

Artist's impression of supernova 1993J.  Credit: Wikimedia Commons

Artist’s impression of supernova 1993J. Credit: Wikimedia Commons

When a star is ready to drop the curtain, it goes out with a bang — a supernova explosion. Sometimes, however, some stars blow up twice. Now, astronomers studying these rare and mysterious cosmic events say they’ve uncovered a link between these double explosions and another class of novas called superluminous supernovas.

Supernovae are basically stellar eruptions, triggered either by the gravitational collapse of a massive star, or by the sudden re-ignition of nuclear fusion in a degenerate star. They are amazing manifestations of energy – for brief moments, a supernova can outshine an entire galaxy, radiating as much energy as the Sun or any ordinary star is expected to emit over its entire lifespan, before fading after a few weeks or months. A typical supernova will also eject enough material to seed 7,000 Earths. The shock breakout immediately precedes the ‘big event’ and is essentially a massive flash of brightness.

Maybe the rarest class of supernovas, however, are the superluminous kind. These are up to 100 times brighter than the regular variety. They’re also very rare. Only 0.1% of supernovas are superluminous and only 30 have been caught by astronomers so far.

These mysterious cosmic bodies are the focus of research nowadays as astronomers try to piece the puzzle of their origin. We still don’t know a lot about them, but previous work seems to suggest superluminous supernovas blow up twice, something that British researchers seem to confirm in this new study.

Using the Gran Telescopio Canarias, a telescope in Spain’s Canary Islands, astronomers spotted one of this rare gems in 2014. The superluminous supernova called DES14X3taz is located 6.4 billion light-years from Earth. The scientists were lucky enough to catch the explosion as it unfolded, and tracked its temperature for months. What they found was that after an initial spike of brightness, the supernova cooled off, only to turn the lights on much brighter some time later.

This graph shows the evolution of the apparent brightness of the new supernova. You can notice the initial peak, which rapidly drops for a couple of days. The brightness increases again for a double bang. Credit: Mathew Smith.

This graph shows the evolution of the apparent brightness of the new supernova. You can notice the initial peak, which rapidly drops for a couple of days. The brightness increases again for a double bang. Credit: Mathew Smith.

This initial spike of the dying star which had a mass 200 times greater than the sun was likely due to the ejection of a huge bubble of material. As this bubble grew to tremendous size, the material rapidly cooled. What was most remarkable, however, was that following the initial spike of brightness the star gave birth to a magnetar.

Though it sounds like a magnetic centaur, a magnetar is, in fact, a type of neutron star — the collapsed core of the star following the nova event. Magnetars are among the most powerful magnets in the Universe. In this particular case, the creation of the magnetar triggered the second, much more powerful supernova event because it heated the bubble of matter initially expelled into outer space.

Mathew Smith, an astrophysicist at the University of Southampton in England, one of the lead authors of the study, peered through existing literature and databases and found this sort of double-peak events are very common among superluminous supernovas. The two may be intrinsically connected, the researchers conclude.

“What we have managed to observe, which is completely new” said Smith, “is that before the major explosion there is a shorter, less luminous outburst, which we can pick out because it is followed by a dip in the light curve, and which lasts just a few days.”

“The hunt is now on to find these events early and really tie down what causes them,” Smith said. “Fingers crossed we find some more.”

share Share

The Earliest Titanium Dental Implants From the 1980s Are Still Working Nearly 40 Years Later

Longest implant study shows titanium roots still going strong decades later.

Common Painkillers Are Also Fueling Antibiotic Resistance

The antibiotic is only one factor creating resistance. Common painkillers seem to supercharge the process.

New Liquid Uranium Rocket Could Halve Trip to Mars

Liquid uranium rockets could make the Red Planet a six-month commute.

Scientists think they found evidence of a hidden planet beyond Neptune and they are calling it Planet Y

A planet more massive than Mercury could be lurking beyond the orbit of Pluto.

People Who Keep Score in Relationships Are More Likely to End Up Unhappy

A 13-year study shows that keeping score in love quietly chips away at happiness.

NASA invented wheels that never get punctured — and you can now buy them

Would you use this type of tire?

Does My Red Look Like Your Red? The Age-Old Question Just Got A Scientific Answer and It Changes How We Think About Color

Scientists found that our brains process colors in surprisingly similar ways.

Why Blue Eyes Aren’t Really Blue: The Surprising Reason Blue Eyes Are Actually an Optical Illusion

What if the piercing blue of someone’s eyes isn’t color at all, but a trick of light?

Meet the Bumpy Snailfish: An Adorable, Newly Discovered Deep Sea Species That Looks Like It Is Smiling

Bumpy, dark, and sleek—three newly described snailfish species reveal a world still unknown.

Scientists Just Found Arctic Algae That Can Move in Ice at –15°C

The algae at the bottom of the world are alive, mobile, and rewriting biology’s rulebook.