homehome Home chatchat Notifications


Ballantine creates whiskey glass to be used in zero G, spill free

Scottish manufacturer Ballantines comes to the aid of space-dwellers the world round (and beyond) with a new, high-tech glass that promises to make getting hammered with style in space a reality.

Alexandru Micu
September 8, 2015 @ 11:02 am

share Share

Another full and tiring day is over, and you just want to unwind with a nice glass of whiskey. You pour yourself a shot, and take up the glass, gleefully anticipating the aged flavor and warming flow of the liquor but then, disaster strikes. The drink floats up lazily into the cabin, in a most unglasslike sphere – you’re an astronaut, and you can’t get your buzz on, foiled by zero G.

If there’s one thing we at ZME Science support wholeheartedly it’s drinking…For science! We’ve already told you how Japanese distillery Suntory and Socttish Ardbeg Distillery sent samples of the amber nectar into orbit to study how the aging process can be improved when gravity is taken out of the mix.

Suntory’s packs of liquor were outfitted with straws, but it’s unlikely the astronauts manning the ISS would take a sip in such a crude manner.

But worry not, for Scottish manufacturer Ballantine comes to the aid of space-dwellers the world round (and beyond) with a new, high-tech glass that promises to make getting hammered with style in space a reality.

“With style” here is used loosely.
Image via pics-about.space

To make the glass space-friendly, Ballantine relied on James Parr from the Open Space Agency to engineer a system that would solve a two-fold problem: pouring the liquor inside, and getting it out only when drinking.

The solution Parr came up with is a futuristic glass that has a convex gold plate embedded in its base. This metal sheet provides enough surface tension to hold the liquid down. The drink then passes through a spiraling channel in the form of a helix, built around the glass’ side walls, reaching up to a golden mouthpiece. It was successfully tested in a microgravity environment at the Zarm Drop Tower in Bremen, Germany, Wired reports.

Bling!
Image via 3dprint

Most of the materials including the gold base and the “glass” itself are 3-D-printed. The “glass” itself is a medical-grade PLA plastic since actual glass is fragile and could break easily as it floats in microgravity.

The tiny hole you see in the bottom of the glass is a valve through which the drink can be poured into the glass. Gold plate was chosen over other metals since it’s chemically unreactive and won’t spoil the liquor’s taste. But what good is it to have the whiskey contained if the glass is just gonna float around the spaceship? Well, it won’t – a magnet is built-in beneath the base plate to hold the glass down on magnetic surfaces.

They also put together an awesome presentation video for the glass:

Ballantine published the details of the process in an article for Medium.

 

share Share

Why You Should Stop Using Scented Candles—For Good

They're seriously not good for you.

People in Thailand were chewing psychoactive nuts 4,000 years ago. It's in their teeth

The teeth Chico, they never lie.

To Fight Invasive Pythons in the Everglades Scientists Turned to Robot Rabbits

Scientists are unleashing robo-rabbits to trick and trap giant invasive snakes

Lab-Grown Beef Now Has Real Muscle Fibers and It’s One Step Closer to Burgers With No Slaughter

In lab dishes, beef now grows thicker, stronger—and much more like the real thing.

From Pangolins to Aardvarks, Unrelated Mammals Have Evolved Into Ant-Eaters 12 Different Times

Ant-eating mammals evolved independently over a dozen times since the fall of the dinosaurs.

Potatoes were created by a plant "love affair" between tomatoes and a wild cousin

It was one happy natural accident.

Quakes on Mars Could Support Microbes Deep Beneath Its Surface

A new study finds that marsquakes may have doubled as grocery deliveries.

Scientists Discover Life Finds a Way in the Deepest, Darkest Trenches on Earth

These findings challenge what we thought we knew about life in the deep sea.

Solid-State Batteries Charge in 3 Minutes, Offer Nearly Double the Range, and Never Catch Fire. So Why Aren't They In Your Phones and Cars Yet?

Solid state are miles ahead lithium-ion, but several breakthroughs are still needed before mass adoption.

What if the Secret to Sustainable Cities Was Buried in Roman Cement?

Is Roman concrete more sustainable? It's complicated.