homehome Home chatchat Notifications


Space pups: mouse sperm stored on International Space Station produces healthy offspring

There are no superpowers but also no genetic damage.

Mihai Andrei
June 15, 2021 @ 9:54 am

share Share

Mouse sperm was frozen and stored on the International Space Station for six years — exposed to high levels of cosmic radiation. The sperm was stored in freeze-dried form, and then rehydrated after it was brought back to Earth. Now, Japanese researchers have found that the sperm produced a brood of healthy pups that don’t seem at all different from their earthbound brethren.

This September 11, 2020, image courtesy of Teruhiko Wakayama, University of Yamanashi, shows healthy offspring and next generation of mice derived from space preserved spermatozoa.

Remarkably unremarkable

The experiment started in 2013, when developmental biologist Teruhiko Wakayama and colleagues launched three boxes to the International Space Station (ISS) for a study. The boxes contained samples of freeze-dried mouse sperm, and the goal of the study was to see whether exposure to cosmic radiation would have any effects on offspring produced with the sperm. In particular, the researchers were looking to see if any genetic mutations would be passed on.

Freeze-dried sperm was used because it can be preserved at room temperature (rather than requiring a freezer), and it only requires a small amount of space, thus reducing the costs of flying to and storing aboard the ISS. The entire setup was about the size of a pencil.

Radiation can damage DNA within cells, and space radiation has been a concern for astronomers for a while now, with astronauts from countries like the US and Japan being engaged in lengthy missions in low orbit — and even longer missions on the horizon. Space agencies are looking at developing systems that could protect astronauts from the long-term effects of radiation, which can damage the DNA within cells and cause mutations.

This is where the space pups come in. After the sperm was returned to Earth, it was rehydrated and used for fertilization. There appeared to be no difference between the offspring obtained thusly, and the control group. When the space mice reached adulthood, they were randomly mated and the next generation appeared normal as well.

“All pups had normal appearance,” Wakayama told AFP, and when researchers examined their genes “no abnormalities were found.”

From SciFi to reality

Wakayama was inspired by the science fiction of Heinlein and Asimov and once wanted to be an astronaut. He shifted paths somewhat and opted for a science career, working to turn the concepts described in fiction works into reality.

If humanity wants to carry on exploring the solar system and eventually even move beyond that, we’ll need to have a safe way of ensuring long-term space flight. If this happens, we’ll need ways to ensure the genetic diversity of space colonizers — as well as their pets and animals. According to the team’s calculations, freeze-dried sperm can be safely stored for up to 200 years on board an orbital ship as the process of freeze drying increases its tolerance.

“In the future, when the time comes to migrate to other planets, we will need to mantain the diversity of genetic resources, not only for humans but also for pets and domestic animals,” Wakayama and colleagues wrote in their paper.

“For cost and safety reasons, it is likely that stored germ cells will be transported by spaceships rather than by living animals.”

While the results are encouraging though, they don’t guarantee that humans can freely travel to the stars now. The same findings would need to be replicated on humans, and in addition, the effects of space radiation on frozen female eggs and fertilized embryos would also have to be investigated. The human space age isn’t here quite yet. But it may not be long now.

Journal References: Sayaka Wakayama et al, Evaluating the long-term effect of space radiation on the reproductive normality of mammalian sperm preserved on the International Space Station, Science Advances (2021). DOI: 10.1126/sciadv.abg5554

share Share

AI 'Reanimated' a Murder Victim Back to Life to Speak in Court (And Raises Ethical Quandaries)

AI avatars of dead people are teaching courses and testifying in court. Even with the best of intentions, the emerging practice of AI ‘reanimations’ is an ethical quagmire.

This Rare Viking Burial of a Woman and Her Dog Shows That Grief and Love Haven’t Changed in a Thousand Years

The power of loyalty, in this life and the next.

This EV Battery Charges in 18 Seconds and It’s Already Street Legal

RML’s VarEVolt battery is blazing a trail for ultra-fast EV charging and hypercar performance.

DARPA Just Beamed Power Over 5 Miles Using Lasers and Used It To Make Popcorn

A record-breaking laser beam could redefine how we send power to the world's hardest places.

Why Do Some Birds Sing More at Dawn? It's More About Social Behavior Than The Environment

Study suggests birdsong patterns are driven more by social needs than acoustics.

Nonproducing Oil Wells May Be Emitting 7 Times More Methane Than We Thought

A study measured methane flow from more than 450 nonproducing wells across Canada, but thousands more remain unevaluated.

CAR T Breakthrough Therapy Doubles Survival Time for Deadly Stomach Cancer

Scientists finally figured out a way to take CAR-T cell therapy beyond blood.

The Sun Will Annihilate Earth in 5 Billion Years But Life Could Move to Jupiter's Icy Moon Europa

When the Sun turns into a Red Giant, Europa could be life's final hope in the solar system.

Ancient Roman ‘Fast Food’ Joint Served Fried Wild Songbirds to the Masses

Archaeologists uncover thrush bones in a Roman taberna, challenging elite-only food myths

A Man Lost His Voice to ALS. A Brain Implant Helped Him Sing Again

It's a stunning breakthrough for neuroprosthetics