homehome Home chatchat Notifications


Space pups: mouse sperm stored on International Space Station produces healthy offspring

There are no superpowers but also no genetic damage.

Mihai Andrei
June 15, 2021 @ 9:54 am

share Share

Mouse sperm was frozen and stored on the International Space Station for six years — exposed to high levels of cosmic radiation. The sperm was stored in freeze-dried form, and then rehydrated after it was brought back to Earth. Now, Japanese researchers have found that the sperm produced a brood of healthy pups that don’t seem at all different from their earthbound brethren.

This September 11, 2020, image courtesy of Teruhiko Wakayama, University of Yamanashi, shows healthy offspring and next generation of mice derived from space preserved spermatozoa.

Remarkably unremarkable

The experiment started in 2013, when developmental biologist Teruhiko Wakayama and colleagues launched three boxes to the International Space Station (ISS) for a study. The boxes contained samples of freeze-dried mouse sperm, and the goal of the study was to see whether exposure to cosmic radiation would have any effects on offspring produced with the sperm. In particular, the researchers were looking to see if any genetic mutations would be passed on.

Freeze-dried sperm was used because it can be preserved at room temperature (rather than requiring a freezer), and it only requires a small amount of space, thus reducing the costs of flying to and storing aboard the ISS. The entire setup was about the size of a pencil.

Radiation can damage DNA within cells, and space radiation has been a concern for astronomers for a while now, with astronauts from countries like the US and Japan being engaged in lengthy missions in low orbit — and even longer missions on the horizon. Space agencies are looking at developing systems that could protect astronauts from the long-term effects of radiation, which can damage the DNA within cells and cause mutations.

This is where the space pups come in. After the sperm was returned to Earth, it was rehydrated and used for fertilization. There appeared to be no difference between the offspring obtained thusly, and the control group. When the space mice reached adulthood, they were randomly mated and the next generation appeared normal as well.

“All pups had normal appearance,” Wakayama told AFP, and when researchers examined their genes “no abnormalities were found.”

From SciFi to reality

Wakayama was inspired by the science fiction of Heinlein and Asimov and once wanted to be an astronaut. He shifted paths somewhat and opted for a science career, working to turn the concepts described in fiction works into reality.

If humanity wants to carry on exploring the solar system and eventually even move beyond that, we’ll need to have a safe way of ensuring long-term space flight. If this happens, we’ll need ways to ensure the genetic diversity of space colonizers — as well as their pets and animals. According to the team’s calculations, freeze-dried sperm can be safely stored for up to 200 years on board an orbital ship as the process of freeze drying increases its tolerance.

“In the future, when the time comes to migrate to other planets, we will need to mantain the diversity of genetic resources, not only for humans but also for pets and domestic animals,” Wakayama and colleagues wrote in their paper.

“For cost and safety reasons, it is likely that stored germ cells will be transported by spaceships rather than by living animals.”

While the results are encouraging though, they don’t guarantee that humans can freely travel to the stars now. The same findings would need to be replicated on humans, and in addition, the effects of space radiation on frozen female eggs and fertilized embryos would also have to be investigated. The human space age isn’t here quite yet. But it may not be long now.

Journal References: Sayaka Wakayama et al, Evaluating the long-term effect of space radiation on the reproductive normality of mammalian sperm preserved on the International Space Station, Science Advances (2021). DOI: 10.1126/sciadv.abg5554

share Share

The Universe’s First “Little Red Dots” May Be a New Kind of Star With a Black Hole Inside

Mysterious red dots may be a peculiar cosmic hybrid between a star and a black hole.

Peacock Feathers Can Turn Into Biological Lasers and Scientists Are Amazed

Peacock tail feathers infused with dye emit laser light under pulsed illumination.

Helsinki went a full year without a traffic death. How did they do it?

Nordic capitals keep showing how we can eliminate traffic fatalities.

Scientists Find Hidden Clues in The Alexander Mosaic. Its 2 Million Tiny Stones Came From All Over the Ancient World

One of the most famous artworks of the ancient world reads almost like a map of the Roman Empire's power.

Ancient bling: Romans May Have Worn a 450-Million-Year-Old Sea Fossil as a Pendant

Before fossils were science, they were symbols of magic, mystery, and power.

This AI Therapy App Told a Suicidal User How to Die While Trying to Mimic Empathy

You really shouldn't use a chatbot for therapy.

This New Coating Repels Oil Like Teflon Without the Nasty PFAs

An ultra-thin coating mimics Teflon’s performance—minus most of its toxicity.

Why You Should Stop Using Scented Candles—For Good

They're seriously not good for you.

People in Thailand were chewing psychoactive nuts 4,000 years ago. It's in their teeth

The teeth Chico, they never lie.

To Fight Invasive Pythons in the Everglades Scientists Turned to Robot Rabbits

Scientists are unleashing robo-rabbits to trick and trap giant invasive snakes