homehome Home chatchat Notifications


New detonating engine could make space travel faster and cheaper

A major breakthrough could be coming to rocket engines.

Jordan Strickler
February 19, 2020 @ 12:52 pm

share Share

A new type of engine could make air and space travel more fuel-efficient, lightweight and less complicated to construct than your normal run-of-the-mill rocket. And, while companies have been working on prototypes for the engine for a few years now, a team from the University of Washington (UW) has actually developed tests to make this somewhat unpredictable firepower more stable.

https://www.youtube.com/watch?v=zXSsd7uXjt8&feature=youtu.be
The ignition of a rotating detonation engine in slow motion (Image: James Koch/University of Washington)

Coined the “rotating detonation engine“, the engine’s detonation chamber is a thin, hollow cylinder. When fired up, the engine sets off a detonation using fuel, oxygen, pressure and heat which then sends a shockwave chasing itself through the cylindrical loop.

“A rotating detonation engine takes a different approach to how it combusts propellant,” said lead author James Koch, a UW doctoral student in aeronautics and astronautics. “It’s made of concentric cylinders. Propellant flows in the gap between the cylinders, and, after ignition, the rapid heat release forms a shock wave, a strong pulse of gas with significantly higher pressure and temperature that is moving faster than the speed of sound.

“This combustion process is literally a detonation — an explosion — but behind this initial start-up phase, we see a number of stable combustion pulses form that continue to consume available propellant,” he continues. “This produces high pressure and temperature that drives exhaust out the back of the engine at high speeds, which can generate thrust.”

Published in Physical Review E, the UW researchers developed an experimental rotating detonation engine in which they could control different parameters, like the size of the gap between the cylinders. Then they recorded the combustion processes with a high-speed camera. Taking only half a second to complete, the researchers recorded these experiments at 240,000 frames per second so they could see what was happening in slow-mo. From there, they developed a mathematical model to mimic what they saw in the videos.

“This is the only model in the literature currently capable of describing the diverse and complex dynamics of these rotating detonation engines that we observe in experiments,” said co-author J. Nathan Kutz, a UW professor of applied mathematics.

The model they developed allowed them to determine for the first time whether a rotating detonation engine would be stable or not and also allowed them to assess how well a specific engine was performing.

“My goal here was solely to reproduce the behavior of the pulses we saw — to make sure that the model output is similar to our experimental results,” Koch said. “I have identified the dominant physics and how they interplay. Now I can take what I’ve done here and make it quantitative. From there we can talk about how to make a better engine.”

The new engine differs from normal rocket propulsion in that your everyday rocket works by burning propellant and then pushing it out of the rear to create thrust. The shockwave method is much more efficient (and badass). It would also save a lot of fuel. The Space Shuttle required more than 3.5 million pounds of propellant to reach orbit — that is about 15 times heavier than a blue whale.

An experimental rotating detonation engine (Image: James Koch/University of Washington)

GE Research claims an aircraft propelled by a rotating detonation engine in place of current jet engines could travel from New York to LA in an hour and touts that, with the time change, you would actually be going back in time.

The fastest commercial to date was the now-extinct Concorde. Able to travel at speeds just north of Mach 2, it utilized turbofans to propel it forward. Alas, the bird was just too expensive to fly, so it was decommissioned in 2003.

share Share

Menstrual Cups Passed a Brutal Space Test. They Could Finally Fix a Major Problem for Many Astronauts

Reusable menstrual cups pass first test in space-like flight conditions.

A Rocket Carried Cannabis Seeds and 166 Human Remains into Space But Their Capsule Never Made It Back

The spacecraft crashed into the Pacific Ocean after a parachute failure, ending a bold experiment in space biology and memorial spaceflight.

An Asteroid Might Hit the Moon in 2032 and Turn It Into a Massive Fireworks Show from Earth

The next big space threat isn't to Earth. It's to the Moon.

This Colorful Galaxy Map Is So Detailed You Can See Stars Being Born

Astronomers unveil the most detailed portrait yet of a nearby spiral galaxy’s complex inner life

A NASA Spacecraft Just Spotted a Volcano on Mars Like We Have Never Seen Before

NASA's Mars Odyssey captures a surreal new image of Arsia Mons at sunrise

Astronomers Found a Volcano Hiding in Plain Sight on Mars

It's not active now, and it hasn't been active for some time, but it's a volcano.

The World’s Largest Camera Is About to Change Astronomy Forever

A new telescope camera promises a 10-year, 3.2-billion-pixel journey through the southern sky.

The Sun Will Annihilate Earth in 5 Billion Years But Life Could Move to Jupiter's Icy Moon Europa

When the Sun turns into a Red Giant, Europa could be life's final hope in the solar system.

A Massive Particle Blasted Through Earth and Scientists Think It Might Be The First Detection of Dark Matter

A deep-sea telescope may have just caught dark matter in action for the first time.

Scientists Used Lasers To Finally Explain How Tiny Dunes Form -- And This Might Hold Clues to Other Worlds

Decoding how sand grains move and accumulate on Earth can also help scientists understand dune formation on Mars.