homehome Home chatchat Notifications


Neptune-sized alien planet found to harbor water vapor in its atmosphere

Astronomers have discovered water vapor in the atmosphere of a new exoplanet - a planet from outside our solar system - roughly the size of Neptune, orbiting a star 124 light-years away. This is the first time water vapor has been found on an alien planet smaller than Jupiter. The discovery is set to improve scientists' understanding of how planet forms and which planets may be best suited to support alien life.

Tibi Puiu
September 25, 2014 @ 10:43 am

share Share

Astronomers have discovered water vapor in the atmosphere of a new exoplanet – a planet from outside our solar system – roughly the size of Neptune, orbiting a star 124 light-years away. This is the first time water vapor has been found on an alien planet smaller than Jupiter. The discovery is set to improve scientists’ understanding of how planet forms and which planets may be best suited to support alien life.

exoplanet_neptune

Artist impression of HAT-P-11b. Image: Harvard Center for Astrophysics

The smallest alien planet with water

“Water is the most cosmically abundant molecule that we can directly observe in exoplanets, and we expect it to be prevalent in the upper atmospheres of planets at these temperatures,” lead author Jonathan Fraine said.

The exoplanet, called HAT-P-11b, was found using data collected by the Hubble Space Telescope, Spitzer Space Telescope and Kepler spacecraft, the international team of astronomers. Typically, astronomers never image planets directly, but instead study the light and wobbles emitted by distant stars, some even millions of light years away, through a technique called the transit method. Basically, as a planet passes in front of its star in our plane of observation, it affects the incoming light that reaches us. By studying which frequencies get absorbed and how much of the light gets blocked by the exoplanet can infer a number of properties about it, like mass, size and orbital period.

transit_method_exoplanet

Credit: Las Cumbres Observatory Global Telescope Network

The exoplanet is found in the constellation Cygnus, about 124 light-years from Earth. The planet, roughly four times the size of Earth,  it orbits at only one twentieth the distance between Earth and the Sun, making the trip once every five days. Because of its close proximity, the planet’s surface can reach temperatures as high as 1,120 degrees Fahrenheit, making life impossible.

To study the chemical makeup of the exoplanet’s atmosphere, a technique called  transmission spectroscopy is employed. Different molecules, such as water,produce different spectra by absorbing different wavelengths of the star’s light as it passes through the planet’s atmosphere. Observations suggested that indeed the planet’s atmosphere contained water vapor, but to be sure they weren’t actually picking up signals of water in relatively cool starspots on the host star, the researchers used visible-light observations from Kepler and infrared observations from Spitzer. The data suggests the hotspots are too hot to support water and confirmed the finding, making  HAT-P-11b the smallest planet found so far to support water.

“This discovery is a significant milepost on the road to eventually analyzing the atmospheric composition of smaller, rocky planets more like Earth,” said John Grunsfeld, assistant administrator of NASA’s Science Mission Directorate in Washington, D.C.

Water vapor has traditionally been found in larger, gassier giants as large or larger than Jupiter since smaller planets typically contain little hydrogen, suggesting a hazy atmosphere that is very difficult to study. Besides water, HAT-P-11b has plenty of hydrogen in its atmosphere which made observations easier.

“In the long run, if we can detect water, methane, carbon monoxide, carbon dioxide, etc., in dozens to hundreds of exoplanet atmospheres of various bulk properties, then we will be able to paint a much clearer picture of how planets form, and, likewise, how Earth formed,” lead author Jonathan Fraine, a graduate student at the University of Maryland, told Space.com. “This was just one of the beginning brush strokes to painting the full picture of how planets, as well as ourselves, were formed.”

The researchers — a international team consisting of astronomers from Maryland, California and Seattle as well as the United Kingdom, Chile and Switzerland — published their findings in the journal Nature on Wednesday.

share Share

The Universe’s First “Little Red Dots” May Be a New Kind of Star With a Black Hole Inside

Mysterious red dots may be a peculiar cosmic hybrid between a star and a black hole.

Peacock Feathers Can Turn Into Biological Lasers and Scientists Are Amazed

Peacock tail feathers infused with dye emit laser light under pulsed illumination.

Helsinki went a full year without a traffic death. How did they do it?

Nordic capitals keep showing how we can eliminate traffic fatalities.

Scientists Find Hidden Clues in The Alexander Mosaic. Its 2 Million Tiny Stones Came From All Over the Ancient World

One of the most famous artworks of the ancient world reads almost like a map of the Roman Empire's power.

Ancient bling: Romans May Have Worn a 450-Million-Year-Old Sea Fossil as a Pendant

Before fossils were science, they were symbols of magic, mystery, and power.

This AI Therapy App Told a Suicidal User How to Die While Trying to Mimic Empathy

You really shouldn't use a chatbot for therapy.

This New Coating Repels Oil Like Teflon Without the Nasty PFAs

An ultra-thin coating mimics Teflon’s performance—minus most of its toxicity.

Why You Should Stop Using Scented Candles—For Good

They're seriously not good for you.

People in Thailand were chewing psychoactive nuts 4,000 years ago. It's in their teeth

The teeth Chico, they never lie.

To Fight Invasive Pythons in the Everglades Scientists Turned to Robot Rabbits

Scientists are unleashing robo-rabbits to trick and trap giant invasive snakes