homehome Home chatchat Notifications


Radio bursts from 8 billion years ago could reveal the Universe's true mass

An ancient fast radio burst (FRB) may provide answers to the challenge of determining the universe's mass

Jordan Strickler
October 19, 2023 @ 10:26 pm

share Share

This artist’s impression shows the fast radio burst FRB 20220610A’s path from its distant galaxy to Earth. (Credit: ESO/M. Kornmesser)

The challenge of determining the universe’s mass has long intrigued astronomers. A recent discovery, as detailed in Science, offers new insights into this profound question. An ancient fast radio burst (FRB) may provide answers.

As the name suggests, fast radio bursts are short, powerful bursts of radio waves. Their significance in this context is their potential connection to the so-called “missing” matter between galaxies. This recent FRB, detected by the Commonwealth Scientific and Industrial Research Organisation’s (CSIRO) Australian Square Kilometer Array Pathfinder (ASKAP) radio telescope, hails from about eight billion years ago. But what makes it unique is its potential as a tool for gauging the universe’s mass.

According to the study, the source of this FRB, coined FRB 20220610A, traces back to a merging cluster of two or three galaxies. This revelation bolsters prevailing theories regarding the origins of FRBs which have puzzled scientists since their first discovery in 2007. Current telescopic technology has limitations, and the researchers believe that eight billion years is the most extended distance within which we can accurately locate and discern FRBs.

This aligns with an idea put forth by the late astronomer Jean-Pierre ‘J-P’ Macquart. He proposed that the distance an FRB has traveled could indicate the amount of diffuse gas it passed through between galaxies. In essence, the farther the FRB, the more matter it encountered, allowing us to estimate the universe’s mass.

However, there’s a problem. Current methods for calculating the universe’s weight give inconsistent results as Swinburne University of Technology associate Ryan Shannon, a study author, points out.

“If we count up the amount of normal matter in the Universe – the atoms that we are all made of – we find that more than half of what should be there today is missing.”

Is this missing matter hiding between galaxies? Shannon believes FRBs might help solve this puzzle.

“We think that the missing matter is hiding in the space between galaxies, but it may just be so hot and diffuse that it’s impossible to see using normal techniques. Fast radio bursts sense this ionized material. Even in space that is nearly perfectly empty they can ‘see’ all the electrons, and that allows us to measure how much stuff is between the galaxies.”

In practical terms, if this relationship holds true, FRBs become more than just cosmic phenomena. They become essential tools in the effort to determine the universe’s mass. Instruments like ASKAP and the upcoming international Square Kilometre Array telescopes to be based in Australia and South Africa, respectively, play a crucial role in this endeavor. They’re not just for observing space but vital for understanding the universe’s structure and weight.

“While we still don’t know what causes these massive bursts of energy, the paper confirms that fast radio bursts are common events in the cosmos and that we will be able to use them to detect matter between galaxies, and better understand the structure of the Universe,” Shannon said.

share Share

“How Fat Is Kim Jong Un?” Is Now a Cybersecurity Test

North Korean IT operatives are gaming the global job market. This simple question has them beat.

This New Atomic Clock Is So Precise It Won’t Lose a Second for 140 Million Years

The new clock doesn't just keep time — it defines it.

A Soviet shuttle from the Space Race is about to fall uncontrollably from the sky

A ghost from time past is about to return to Earth. But it won't be smooth.

The world’s largest wildlife crossing is under construction in LA, and it’s no less than a miracle

But we need more of these massive wildlife crossings.

Your gold could come from some of the most violent stars in the universe

That gold in your phone could have originated from a magnetar.

Ronan the Sea Lion Can Keep a Beat Better Than You Can — and She Might Just Change What We Know About Music and the Brain

A rescued sea lion is shaking up what scientists thought they knew about rhythm and the brain

Did the Ancient Egyptians Paint the Milky Way on Their Coffins?

Tomb art suggests the sky goddess Nut from ancient Egypt might reveal the oldest depiction of our galaxy.

Dinosaurs Were Doing Just Fine Before the Asteroid Hit

New research overturns the idea that dinosaurs were already dying out before the asteroid hit.

Denmark could become the first country to ban deepfakes

Denmark hopes to pass a law prohibiting publishing deepfakes without the subject's consent.

Archaeologists find 2,000-year-old Roman military sandals in Germany with nails for traction

To march legionaries across the vast Roman Empire, solid footwear was required.