homehome Home chatchat Notifications


NASA creates stunning visualization of melting snowflake

Something as simple as a snowflake melting can be very difficult to understand.

Mihai Andrei
March 29, 2018 @ 11:36 pm

share Share

For the first time, researchers have created a 3D numerical model of melting snowflakes in the atmosphere. Aside from just painting a pretty, scientifically accurate picture, this could also help scientists develop better weather models and predictions.

This model reproduces key features of melting snowflakes that have been observed in nature: first, meltwater gathers in any concave regions of the snowflake’s surface. These liquid-water regions merge as they grow and eventually form a shell of liquid around an ice core, finally developing into a water drop. Credit: NASA.

If there’s anything this winter has taught us, it’s that weather is still surprising. Weather predictions have come a long way, but the sheer complexity of all the elements involved makes it very difficult to create accurate models — one of those elements which adds complexity is snow.

Snow not only affects weather predictions, but it also affects remote sensing. For instance, a radar “profile” of the atmosphere will typically show a very bright layer at the altitude where falling snow and hail melt — much brighter than atmospheric layers above and below it. We don’t really know why this happens, and we don’t understand many things about how snow starts to melt high up in the atmosphere. This is where NASA’s Jussi Leinonen enters the stage.

Leinonen created a melting model for snowflakes. He started his model by observing snowflakes in nature and noting the different melting stages. First, the outer parts start to melt, creating a bit of liquid water. This meltwater gathers in any concave regions it can find, and then the different droplets merge to form a liquid shell around the ice core. Ultimately, this melted core develops into a water drops, as can be seen above.

Although snowflakes notoriously have different intricate forms, the process seems to carry out similarly, regardless of what the shape might be.

While this isn’t the first model of snow melting, it’s by far the most accurate. This improvement could lead to significant improvements in several fields of research. Taking into consideration the individual dynamics of individual snowflakes can help researchers better understand the cryosphere — the collection of the Earth’s ice sheets, glaciers, sea ice, snow cover, and permafrost.

In 2018, NASA will launch two new satellite missions, conducting an array of field research that will enhance our understanding of the Earth’s cryosphere.

The paper, titled “Snowflake melting simulation using smoothed particle hydrodynamics,” recently appeared in the Journal of Geophysical Research – Atmospheres.

share Share

A Former Intelligence Officer Claimed This Photo Showed a Flying Saucer. Then Reddit Users Found It on Google Earth

A viral image sparks debate—and ridicule—in Washington's push for UFO transparency.

This Flying Squirrel Drone Can Brake in Midair and Outsmart Obstacles

An experimental drone with an unexpected design uses silicone wings and AI to master midair maneuvers.

Oldest Firearm in the US, A 500-Year-Old Cannon Unearthed in Arizona, Reveals Native Victory Over Conquistadores

In Arizona’s desert, a 500-year-old cannon sheds light on conquest, resistance, and survival.

No, RFK Jr, the MMR vaccine doesn’t contain ‘aborted fetus debris’

Jesus Christ.

“How Fat Is Kim Jong Un?” Is Now a Cybersecurity Test

North Korean IT operatives are gaming the global job market. This simple question has them beat.

This New Atomic Clock Is So Precise It Won’t Lose a Second for 140 Million Years

The new clock doesn't just keep time — it defines it.

A Soviet shuttle from the Space Race is about to fall uncontrollably from the sky

A ghost from time past is about to return to Earth. But it won't be smooth.

The world’s largest wildlife crossing is under construction in LA, and it’s no less than a miracle

But we need more of these massive wildlife crossings.

Your gold could come from some of the most violent stars in the universe

That gold in your phone could have originated from a magnetar.

Ronan the Sea Lion Can Keep a Beat Better Than You Can — and She Might Just Change What We Know About Music and the Brain

A rescued sea lion is shaking up what scientists thought they knew about rhythm and the brain