homehome Home chatchat Notifications


New posters feature the 42 largest asteroids imaged in unprecedented detail

Asteroids are pretty, at least from afar.

Mihai Andrei
November 4, 2021 @ 11:33 pm

share Share

Asteroids are rocky remnants from the early days of the solar system. Too small to be a planet, some of them still reach impressive sizes. Out of the over 1 million asteroids researchers have mapped out, a few dozen are over 100 kilometers in size, with the largest known asteroid, Ceres, being 940 km (580 mi) in diameter — so large it’s considered a dwarf planet.

Using the European Southern Observatory’s Very Large Telescope (ESO’s VLT) in Chile, astronomers have imaged 42 of these largest asteroids, showcasing their unique details.

This poster shows 42 of the largest objects in the asteroid belt, located between Mars and Jupiter (orbits not to scale). The images in the outermost circle of this infographic have been captured with the Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE) instrument on ESO’s Very Large Telescope. The poster highlights a few of the objects, including Ceres (the largest asteroid in the belt), Urania (the smallest one imaged), Kalliope (the densest of the imaged asteroids), and Lutetia, which was visited by the European Space Agency’s Rosetta mission. You can buy this poster at the ESOshop.

For many of the asteroids imaged here, it’s the first time they’ve imaged in such detail. Previously, the small number of observations meant we didn’t really know their shape or density.

“Only three large main belt asteroids, Ceres, Vesta, and Lutetia, have been imaged with a high level of detail so far, as they were visited by the space missions Dawn and Rosetta of NASA and the European Space Agency, respectively,” said lead author of the study, Pierre Vernazza of the Laboratoire d’Astrophysique de Marseille in France, in a statement. “Our ESO observations have provided sharp images for many more targets, 42 in total.”

Thanks to the work of Vernazza and colleagues who used ground-based telescopes, we can now see them in more detail than ever before.

This image depicts 42 of the largest objects in the asteroid belt, located between Mars and Jupiter. Most of them are larger than 100 kilometres, with the two biggest asteroids being Ceres and Vesta, which are around 940 and 520 kilometres in diameter, and the two smallest ones being Urania and Ausonia, each only about 90 kilometres. The images of the asteroids have been captured with the Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE) instrument on ESO’s Very Large Telescope.

Roughly speaking, the asteroids can be split into two categories: some are round (like Ceres), while others are more elongated — most notably, the “dog-bone” asteroid Kleopatra.

By analyzing the shapes and densities of the asteroids, researchers found that there’s quite the variety among these asteroids. For instance, the density of some (like Lamberta and Sylvia) is around 1.3 grams per cubic centimeter — comparable to that of coal. The densest ones (Psyche and Kalliope) have a density of 3.9 and 4.4 grams per cubic centimeter respectively — higher than the density of diamond.

Ceres and Vesta, the two largest objects in the asteroid belt between Mars and Jupiter, approximately 940 and 520 kilometres in diameter. These two asteroids are also the two most massive in the sample.

The large variety in density suggests that the asteroids’ composition varies significantly, and if this is the case, it indicates that they also formed differently. In particular, it would suggest that the asteroids (which currently lie between Mars and Jupiter, in the so-called asteroid belt), may have formed in a very different place, beyond Neptune, and migrated to their current location.

“Our observations provide strong support for substantial migration of these bodies since their formation. In short, such tremendous variety in their composition can only be understood if the bodies originated across distinct regions in the Solar System,” explains Josef Hanuš of the Charles University, Prague, Czech Republic, one of the authors of the study.

The study was published in Astronomy and Astrophysics.

share Share

A Rocket Carried Cannabis Seeds and 166 Human Remains into Space But Their Capsule Never Made It Back

The spacecraft crashed into the Pacific Ocean after a parachute failure, ending a bold experiment in space biology and memorial spaceflight.

An Asteroid Might Hit the Moon in 2032 and Turn It Into a Massive Fireworks Show from Earth

The next big space threat isn't to Earth. It's to the Moon.

This Colorful Galaxy Map Is So Detailed You Can See Stars Being Born

Astronomers unveil the most detailed portrait yet of a nearby spiral galaxy’s complex inner life

A NASA Spacecraft Just Spotted a Volcano on Mars Like We Have Never Seen Before

NASA's Mars Odyssey captures a surreal new image of Arsia Mons at sunrise

Astronomers Found a Volcano Hiding in Plain Sight on Mars

It's not active now, and it hasn't been active for some time, but it's a volcano.

The World’s Largest Camera Is About to Change Astronomy Forever

A new telescope camera promises a 10-year, 3.2-billion-pixel journey through the southern sky.

The Sun Will Annihilate Earth in 5 Billion Years But Life Could Move to Jupiter's Icy Moon Europa

When the Sun turns into a Red Giant, Europa could be life's final hope in the solar system.

AI-Based Method Restores Priceless Renaissance Art in Under 4 Hours Rather Than Months

A digital mask restores a 15th-century painting in just hours — not centuries.

A Massive Particle Blasted Through Earth and Scientists Think It Might Be The First Detection of Dark Matter

A deep-sea telescope may have just caught dark matter in action for the first time.

Scientists Used Lasers To Finally Explain How Tiny Dunes Form -- And This Might Hold Clues to Other Worlds

Decoding how sand grains move and accumulate on Earth can also help scientists understand dune formation on Mars.