homehome Home chatchat Notifications


New AI improves orbit entry for Mars satellites

A new algorithm could change the Mars orbiter game.

Jordan Strickler
January 20, 2022 @ 10:58 pm

share Share

Bringing a craft to the right Mars orbit takes time, energy and money. Credit: Pixabay.

Putting a satellite into Mars orbit has never been easy. For the information and data they need to gather, probes must obtain a specific low-altitude orbit. To achieve this orbit, satellites utilize a technique called Aerobraking which brushes the craft against the top of a planetary atmosphere. To attain the maximum drag, the orbiter lowers the craft’s altitude with a little help from its solar panels. However, this procedure takes fuel and lots of time to complete, generally up to six months.

Now though, engineers at the University of Illinois Urbana-Champaign are improving upon the process to save both time, energy and money.

“The trip out to Mars takes somewhere between six to nine months,” said Zach Putnam, an aerospace engineering professor at the university. “We can’t really change that, but we think we can shorten the time it takes to aerobrake to a low-altitude orbit. And the propellant onboard we save can be used to do other things like keep the spacecraft alive longer.”

Engineers have created a real-time algorithm that rotates a satellite’s solar panels which can control how much drag is generated on the spacecraft. The algorithm includes control modes to limit heat rate or heat load — or both — while attempting to take advantage of energy reduction. The process can then be used to steer the craft during atmospheric passes in order to control heating and energy depletion. This process allows the satellite to fly much closer to operational constraints and aerobrake much faster.

“Being able to steer the satellite during each atmospheric pass enables us to ensure we don’t over temperature the solar panels while flying much closer to the thermal limit,” Putnam said. “This is a big improvement. Instead of aerobraking for three to six months, it might only take a couple of weeks.”

Aerobraking consists of three phases: Walk-In, Main Phase and Walk-Out.

During the Walk-In phase, engineers direct the spacecraft to lower the periapsis (the closest point to Mars in its orbit) one orbit at a time, moving the spacecraft from its Mars orbit insertion altitude to its aerobraking altitude. This phase is utilized as a calibration period to understand atmospheric densities and the way which the orbiter performs in and out of aerobraking. This generally lasts about a week or five orbits of the Red Planet.

The Main Phase is the longest and can last around five and a half months. Once the satellite reaches its operational altitude (where the desired atmospheric densities were found), the main stage of aerobraking commences. The orbiter is commanded to perform large-scale decreases in its orbit. If the altitude got too low, the craft would be in danger of overheating. If the altitude gets too high, aerobraking finishes too late. Therefore, small propulsive maneuvers are occasionally performed to keep the satellite within a specified “corridor” by raising or lowering its periapsis altitude.

The Walk-Out Phase is the shortest phase at about five days. Here the orbiter to increases its periapsis, causing the orbit to shrink more leisurely. When the apoapsis (the farthest away from Mars the spacecraft reached in its orbit) reduces to 280 miles (450 kilometers), the periapsis is raised out of the atmosphere and aerobraking is finished.

Putnam believes the new process will transform the way future Mars orbiters operate.

“This software would greatly reduce our reliance on ground stations,” he said. “If we can automate it onboard and only have to check in with the spacecraft once a week, that would really bring costs down. And, it could be done by many satellites at the same time.”

The study was published in the Journal of Guidance, Control and Dynamics.

share Share

An Asteroid Might Hit the Moon in 2032 and Turn It Into a Massive Fireworks Show from Earth

The next big space threat isn't to Earth. It's to the Moon.

This Colorful Galaxy Map Is So Detailed You Can See Stars Being Born

Astronomers unveil the most detailed portrait yet of a nearby spiral galaxy’s complex inner life

New Nanoparticle Vaccine Clears Pancreatic Cancer in Over Half of Preclinical Models

The pancreatic cancer vaccine seems to work so well it's even surprising its creators

A NASA Spacecraft Just Spotted a Volcano on Mars Like We Have Never Seen Before

NASA's Mars Odyssey captures a surreal new image of Arsia Mons at sunrise

Coffee Could Help You Live Longer — But Only If You Have it Black

Drinking plain coffee may reduce the risk of death — unless you sweeten it.

Astronomers Found a Volcano Hiding in Plain Sight on Mars

It's not active now, and it hasn't been active for some time, but it's a volcano.

The World’s Largest Camera Is About to Change Astronomy Forever

A new telescope camera promises a 10-year, 3.2-billion-pixel journey through the southern sky.

The Sun Will Annihilate Earth in 5 Billion Years But Life Could Move to Jupiter's Icy Moon Europa

When the Sun turns into a Red Giant, Europa could be life's final hope in the solar system.

Scientists Turn Timber Into SuperWood: 50% Stronger Than Steel and 90% More Environmentally Friendly

This isn’t your average timber.

A Massive Particle Blasted Through Earth and Scientists Think It Might Be The First Detection of Dark Matter

A deep-sea telescope may have just caught dark matter in action for the first time.