homehome Home chatchat Notifications


Solar winds penetrate Martian atmosphere, MAVEN finds - atmospheric loss mechanism unfolds

Only weeks after it became operational around Mars‘ orbit, NASA’s Mars Atmosphere and Volatile Evolution (MAVEN) mission has uncovered a  new process by which the solar wind can penetrate deep into a planetary atmosphere, past the ionosphere even this shouldn’t have been possible. It seems like a magic trick at the moment, but in time this mechanism […]

Dragos Mitrica
December 16, 2014 @ 12:53 pm

share Share

Only weeks after it became operational around Mars‘ orbit, NASA’s Mars Atmosphere and Volatile Evolution (MAVEN) mission has uncovered a  new process by which the solar wind can penetrate deep into a planetary atmosphere, past the ionosphere even this shouldn’t have been possible. It seems like a magic trick at the moment, but in time this mechanism might help explain how Mars has gone from an atmosphere rich planet, similar to the one found today on Earth, to one that’s less than 1% thick. This is the first time comprehensive measurements of the composition of Mars’ upper atmosphere and electrically charged ionosphere were made.

A leaky planet

Artist impression of MAVEN spacecraft around MARS. Image: NASA

Artist impression of MAVEN spacecraft around MARS. Image: NASA

Each time it completes a full revolution around Mars’ orbit, MAVEN takes a dip inside Mars’ ionosphere – the layer of ions and electrons extending from about 75 to 300 miles above the surface which serves as a shield against solar radiation gusting from solar winds. Here’s where the funny parts starts though. In theory, solar winds – hot, high-energy particles – should be deflected by the ionosphere, so you’d think you can only detect these in the upper atmosphere. Considering MAVEN’s orbit, the probe’s instruments shouldn’t be able to pickup any charged particles when it dips through the ionosphere, but it has.

[ALSO READ] Mars terraforming

MAVEN’s Solar Wind Ion Analyzer found solar-wind particles that are not deflected but penetrate deep into Mars’ upper atmosphere and ionosphere. What happens, NASA scientists reckon, is upper atmosphere interactions transform the charged ions into a neutral form that can penetrate the ionosphere shield. Once there, the stream emerges in ion form again, in all its former glory, retaining all its solar wind characteristics. Something fishy is definitely going on, and scientists believe this peculiar, Hudini-like mechanism makes it easier to link drivers of atmospheric loss directly to activity in the upper atmosphere and ionosphere.

“We are beginning to see the links in a chain that begins with solar-driven processes acting on gas in the upper atmosphere and leads to atmospheric loss,” said Bruce Jakosky, MAVEN principal investigator with the Laboratory for Atmospheric and Space Physics at the University of Colorado, Boulder. “Over the course of the full mission, we’ll be able to fill in this picture and really understand the processes by which the atmosphere changed over time.”

Using MAVEN’s Neutral Gas and Ion Mass Spectrometer, NASA scientists are now studying how gases are escaping from the upper atmosphere, where the loss is happening, by figuring out a connection between the lower atmosphere – close to the planet’s surface – and the ionosphere. Instruments so far reveal there’s an orderly structure of ionized and neutral gases in the upper atmosphere and ionosphere, in stark contrast to the lower atmosphere where the gases are well mixed. By studying variations in these abundances over time, researchers may gain new insights into the physics and chemistry of this region.

The MAVEN probe arrived in Martian orbit on Nov. 16, after being launched in 2013.

Source: NASA

share Share

This Rare Viking Burial of a Woman and Her Dog Shows That Grief and Love Haven’t Changed in a Thousand Years

The power of loyalty, in this life and the next.

This EV Battery Charges in 18 Seconds and It’s Already Street Legal

RML’s VarEVolt battery is blazing a trail for ultra-fast EV charging and hypercar performance.

DARPA Just Beamed Power Over 5 Miles Using Lasers and Used It To Make Popcorn

A record-breaking laser beam could redefine how we send power to the world's hardest places.

Why Do Some Birds Sing More at Dawn? It's More About Social Behavior Than The Environment

Study suggests birdsong patterns are driven more by social needs than acoustics.

Nonproducing Oil Wells May Be Emitting 7 Times More Methane Than We Thought

A study measured methane flow from more than 450 nonproducing wells across Canada, but thousands more remain unevaluated.

CAR T Breakthrough Therapy Doubles Survival Time for Deadly Stomach Cancer

Scientists finally figured out a way to take CAR-T cell therapy beyond blood.

The Sun Will Annihilate Earth in 5 Billion Years But Life Could Move to Jupiter's Icy Moon Europa

When the Sun turns into a Red Giant, Europa could be life's final hope in the solar system.

Ancient Roman ‘Fast Food’ Joint Served Fried Wild Songbirds to the Masses

Archaeologists uncover thrush bones in a Roman taberna, challenging elite-only food myths

A Man Lost His Voice to ALS. A Brain Implant Helped Him Sing Again

It's a stunning breakthrough for neuroprosthetics

This Plastic Dissolves in Seawater and Leaves Behind Zero Microplastics

Japanese scientists unveil a material that dissolves in hours in contact with salt, leaving no trace behind.