homehome Home chatchat Notifications


Growing danger in space? ISS lettuce found susceptible to bacterial infection

Growing food in space isn't without challenges.

Jordan Strickler
January 25, 2024 @ 1:14 pm

share Share

Space lettuce
The ISS harbors numerous pathogenic bacteria and fungi, posing a risk of contamination to plants like lettuce, which can lead to foodborne illnesses. (Credit: Evan Krape/ University of Delaware)

Lettuce and other leafy greens have been a part of astronauts’ diets on the International Space Station (ISS) for years. Grown in control chambers that manage temperature, water, and light, they’ve offered a fresh addition to the space menu. However, a new study hints these veggies might not be as healthy as their Earthly counterparts.

Lack of gravity confuses plant growth and makes them more susceptible to pathogens

The ISS harbors numerous pathogenic bacteria and fungi, posing a risk of contamination to plants like lettuce, which can lead to foodborne illnesses. This issue is significant, especially considering the vast investment in space exploration by NASA and companies like SpaceX.

To address this, University of Delaware (UD) researchers embarked on a study, published in Scientific Reports and npj Microgravity, to understand how lettuce reacts in space-like conditions. They simulated microgravity using a clinostat, which confuses plants’ gravity response, making them lose their sense of direction. Interestingly, they found that plants were more susceptible to Salmonella infections under these conditions.

In plants, stomata – tiny openings used for gas exchange – usually close as a defense against stressors like bacteria. However, lettuce did the opposite under simulated microgravity, opening its stomata wider. This unexpected reaction increased the plants’ vulnerability to pathogens. The researchers used the clinostat to replicate the spinning motion of a rotisserie chicken, effectively disrupting the plants’ normal response to gravity.

“The fact that they were remaining open when we were presenting them with what would appear to be a stress was really unexpected,” lead author Noah Totsline said. “In effect, the plant would not know which way was up or down. We were kind of confusing their response to gravity.”

Another aspect of their research involved a helper bacteria, B. subtilis UD1022, known for enhancing plant growth and resistance against pathogens. Unfortunately, in the simulated microgravity conditions, this bacterium failed to protect the plants, not triggering the usual biochemical response to close the stomata, thus leaving the plants open to Salmonella invasion.

UD microbial food safety professor and study researcher Kali Kniel emphasizes the omnipresence of microbes and the inherent risk of bacterial pathogens in environments like the ISS. With about seven people living in an area the size of a six-bedroom house, the ISS is a potential hotspot for germ transmission. Understanding how pathogens react in microgravity is crucial for developing mitigation strategies.

So, what can be done about plants’ increased vulnerability to pathogens in space? Kniel thinks sterilized seeds could help, but acknowledges there are still risks.

“Starting with sterilized seeds is a way to reduce risks of having microbes on plants,” he said. “But then microbes may be in the space environment and can get onto plants that way.”

By comparing different lettuce varieties under simulated microgravity, the team aims to understand the genetic factors influencing a plant’s reaction to this environment.

“We need to be prepared for and reduce risks in space for those living now on the International Space Station and for those who might live there in the future,” Kniel said. “It is important to better understand how bacterial pathogens react to microgravity to develop appropriate mitigation strategies. To best develop ways to reduce risks associated with the contamination of leafy greens and other produce commodities we need to better understand the interactions between human pathogens on plants grown in space.”

share Share

Cambridge Scientists Develop Urine Test for Early Lung Cancer Detection

Lung cancer often goes undetected until it’s too late. But a new urine test developed by Cambridge scientists could change that.

Scientists Just Found a Way to Turn Sewage into Protein and Green Hydrogen

This new method of converting sewage sludge cuts CO2 emissions by 99.5% compared to conventional methods.

The US Air Force Just Unveiled Its First Unmanned Fighter Drones

They're affectionately called "Loyal Wingmen".

Did WWI Dazzle Camouflage Actually Work? Scientists Revisit a 105-Year-Old Experiment to Find Out

Painting ships like zebras was a bold move, but it likely didn't fool U-boats. Something else worked though.

Study shows "Pro Life" supporters sometimes care more about banning casual sex than sanctity of life

Some Pro Life advocates may actually be subconsciously more fixated on the lives of the parents.

The Smell of Gods: Ancient Greek and Roman Statues Were Once Not Only Painted But Also Perfumed

Ancient artists used perfume to bring their statue to life.

What's Behind the 'Blood Rain' That Turned This Iranian Shoreline Crimson

The island's unique geology is breathtaking.

Less Than 1% of Gun Owners Use Their Firearms for Self-Defense Each Year. But Many More Are Exposed to Gun Violence

The study suggests gun proliferation carries more risks than self-defense benefits.

AI-Powered Test Can Reveal Your Biological Age From Just 5 Drops of Blood

Scientists develop an AI-powered model that reveals the hidden biological clock within our hormones.

When Did Humans First Speak? New Genetic Clues Point to 135,000 Years Ago

Language is one of the biggest force multipliers in our species. It appeared earlier than expected.