homehome Home chatchat Notifications


Hubble finds water vapor on Jupiter's moon Ganymede

Our solar system just keeps getting more interesting.

Mihai Andrei
July 27, 2021 @ 11:53 am

share Share

For the first time, we have strong evidence of water vapor in the atmosphere of Jupiter’s moon Ganymede — the largest moon in the solar system. Researchers suspect the frozen water on Ganymede’s surface sublimated, going straight from solid to gas, without being liquid.

Ganymede’s surface is a mixture of dark, cratered regions and light grooved terrain that forms intricate patterns. Researchers have suspected for quite some time that Ganymede has a lot of water — perhaps more water than the Earth — but since Ganymede lies so far from the Sun, water could only remain liquid under a thick layer of ice.

Ganymede is thought to have three main layers: a metallic iron core, a rocky mantle, and a layer of water, both liquid and frozen. The ice shell on the outside is very thick (around 500 miles / 800 km) and any liquid water could lie below this crust. Nevertheless, though, there is water — and where there is water, there could be life.

Now, for the first time, researchers have found evidence of non-ice water on the surface.

As part of a larger observation program, Lorenz Roth of the KTH Royal Institute of Technology in Stockholm, Sweden was using Hubble to measure the amount of oxygen on Ganymede. Roth and his colleagues used data from two instruments: Hubble’s Cosmic Origins Spectrograph in 2018 and archival images from the Space Telescope Imaging Spectrograph (STIS) from 1998 to 2010.

In 1998, Hubble’s Space Telescope Imaging Spectrograph (STIS) took the first ultraviolet (UV) images of Ganymede, which revealed a particular pattern in the observed emissions from the moon’s atmosphere. The moon displays auroral bands that are somewhat similar to aurora ovals observed on Earth and other planets with magnetic fields. This was illustrative evidence for the fact that Ganymede has a permanent magnetic field. The similarities in the ultraviolet observations were explained by the presence of molecular oxygen (O2). The differences were explained at the time by the presence of atomic oxygen (O), which produces a signal that affects one UV color more than the other. Credit: NASA, ESA, Lorenz Roth (KTH)

The UV data showed the presence of atomic oxygen — at least that’s what the original interpretation from 1998 noted. But much to their surprise, Roth’s team found hardly any evidence of atomic oxygen in Ganymede’s atmosphere. If this is the case, there must be another explanation for the apparent differences in these UV aurora images.

When the researchers took a closer look at the relative distribution of the colorful ribbons of electrified gas called auroral bands in the UV images, they found another piece of evidence: Ganymede’s surface temperature varies strongly throughout the day. Around noon, the equatorial parts of Ganymede may become sufficiently warm that the ice surface releases (or sublimates) some small amounts of water molecules.

This fits excellently with the Hubble data. The presumed oxygen (which Roth now believes to be water vapor) was found exactly around the equator.

“So far only the molecular oxygen had been observed,” explained Roth. “This is produced when charged particles erode the ice surface. The water vapor that we measured now originates from ice sublimation caused by the thermal escape of water vapor from warm icy regions”.

The finding makes Ganymede a much more interesting place, especially considering the European Space Agency’s upcoming mission. JUICE (JUpiter ICy moons Explorer) is planned for launch in 2022, and arrival at Jupiter in 2029. The mission will spend three years making detailed observations of Jupiter and its largest moons — including Ganymede.

“Our results can provide the JUICE instrument teams with valuable information that may be used to refine their observation plans to optimize the use of the spacecraft,” added Roth.

Comparison between the Earth, the Moon (top) and Ganymede (bottom).

Astronomers are increasingly looking at frozen moons around Jupiter and Saturn as places where life could emerge. They were once discarded as barren, frozen wastelands, but the more we look at them, the more the potential habitability of these moons seems increasingly likely. Of course, just because there could be life on Ganymede doesn’t mean there is — that’s up for future research to discover.

The study was published in Nature Astronomy.

share Share

A Former Intelligence Officer Claimed This Photo Showed a Flying Saucer. Then Reddit Users Found It on Google Earth

A viral image sparks debate—and ridicule—in Washington's push for UFO transparency.

This Flying Squirrel Drone Can Brake in Midair and Outsmart Obstacles

An experimental drone with an unexpected design uses silicone wings and AI to master midair maneuvers.

Oldest Firearm in the US, A 500-Year-Old Cannon Unearthed in Arizona, Reveals Native Victory Over Conquistadores

In Arizona’s desert, a 500-year-old cannon sheds light on conquest, resistance, and survival.

No, RFK Jr, the MMR vaccine doesn’t contain ‘aborted fetus debris’

Jesus Christ.

“How Fat Is Kim Jong Un?” Is Now a Cybersecurity Test

North Korean IT operatives are gaming the global job market. This simple question has them beat.

This New Atomic Clock Is So Precise It Won’t Lose a Second for 140 Million Years

The new clock doesn't just keep time — it defines it.

A Soviet shuttle from the Space Race is about to fall uncontrollably from the sky

A ghost from time past is about to return to Earth. But it won't be smooth.

The world’s largest wildlife crossing is under construction in LA, and it’s no less than a miracle

But we need more of these massive wildlife crossings.

Your gold could come from some of the most violent stars in the universe

That gold in your phone could have originated from a magnetar.

Ronan the Sea Lion Can Keep a Beat Better Than You Can — and She Might Just Change What We Know About Music and the Brain

A rescued sea lion is shaking up what scientists thought they knew about rhythm and the brain