homehome Home chatchat Notifications


Stars don't consume their planets - usually

Stars have a pull on all planets, but they exhibit a special kind of attraction towards a class of planets called ‘Hot Jupiters‘. Hot Jupiters, also called roaster planets or pegadisds are a class of extrasolar planets very similar to Jupiter, but which have very high temperatures because they orbit very close to the Sun. […]

Mihai Andrei
June 7, 2013 @ 6:21 am

share Share

Stars have a pull on all planets, but they exhibit a special kind of attraction towards a class of planets called ‘Hot Jupiters‘.

hot jupiter

Hot Jupiters, also called roaster planets or pegadisds are a class of extrasolar planets very similar to Jupiter, but which have very high temperatures because they orbit very close to the Sun. It is thought that all of these planets have migrated from the extremities of the solar system to their current position because there would not have been enough material so close to the star for a planet of that mass to have formed so close to its star.

So they’re formed far away from their star, and then they start getting closer; and closer… and closer! Logic tells you, as they move closer to the star, the gravitational attraction increases, and they will probably end up in eaten by the star. But a new study using data from NASA’s Kepler Space Telescope shows that hot Jupiters are in fact not often consumed by their stars – instead, remaining stable for several billions of years.

“Eventually, all hot Jupiters get closer and closer to their stars, but in this study we are showing that this process stops before the stars get too close,” said Peter Plavchan of NASA’s Exoplanet Science Institute at the California Institute of Technology, Pasadena, Calif. “The planets mostly stabilize once their orbits become circular, whipping around their stars every few days.”

The study, which was published in the Astrophysical Journal, is the first to show that hot Jupiter planets halt their inward march on stars, stabilizing an orbit as the migration ceases.

“When only a few hot Jupiters were known, several models could explain the observations,” said Jack Lissauer, a Kepler scientist at NASA’s Ames Research Center, Moffet Field, Calif., not affiliated with the study. “But finding trends in populations of these planets shows that tides, in combination with gravitational forces by often unseen planetary and stellar companions, can bring these giant planets close to their host stars.”

The full paper can be read here.

Via NASA

share Share

A Long Skinny Rectangular Telescope Could Succeed Where the James Webb Fails and Uncover Habitable Worlds Nearby

A long, narrow mirror could help astronomers detect life on nearby exoplanets

Astronomers May Have Discovered The First Rocky Earth-Like World With An Atmosphere, Just 41 Light Years Out

Astronomers may have discovered the first rocky planet with 'air' where life could exist.

Mars Seems to Have a Hot, Solid Core and That's Surprisingly Earth-Like

Using a unique approach to observing marsquakes, researchers propose a structure for Mars' core.

Giant solar panels in space could deliver power to Earth around the clock by 2050

A new study shows space solar panels could slash Europe’s energy costs by 2050.

Frozen Wonder: Ceres May Have Cooked Up the Right Recipe for Life Billions of Years Ago

If this dwarf planet supported life, it means there were many Earths in our solar system.

Astronomers See Inside The Core of a Dying Star For the First Time, Confirm How Heavy Atoms Are Made

An ‘extremely stripped supernova’ confirms the existence of a key feature of physicists’ models of how stars produce the elements that make up the Universe.

Scientists May Have Found a New Mineral on Mars. It Hints The Red Planet Stayed Warm Longer

Scientists trace an enigmatic infrared band to heated, oxygen-altered sulfates.

A Comet That Exploded Over Earth 12,800 Years Ago May Have Triggered Centuries of Bitter Cold

Comet fragments may have sparked Earth’s mysterious 1,400-year cold spell.

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

Bright, polarized, and unseen in any other light — Punctum challenges astrophysical norms.

How Much Has Mercury Shrunk?

Mercury is still shrinking as it cools in the aftermath of its formation; new research narrows down estimates of just how much it has contracted.