homehome Home chatchat Notifications


The most energetic light recorded thus far hits Tibetan plateau

Gamma-ray particles trillions of times more energetic than regular light hit the Tibetan plateau.

Tibi Puiu
June 27, 2019 @ 12:59 am

share Share

Crab Nebula as seen by Hubble and Herschel. Credit: Wikimedia Commons.

An experiment involving over 600 particle detectors stretched over 36,900 square meters has measured the most energetic light ever witnessed on this planet. The photons were part of gamma rays emanating from the famous Crab Nebula, the remains of a supernova that was first observed in 1054 AD, which is located approximately 6,500 light years away. These photons measured tremendously high values exceeding 100 trillion electron volts (TeV), with one measurement clocking in 450TeV — the highest ever recorded. Previously, photons measuring no more than tens of trillions of electronvolts had been recorded.

Physicists started the Tibet Air Shower Gamma Collaboration, an observatory in the Tibetan Plateau some 4,300 meters above sea level because rarified air at this altitude allows more secondary particles to reach detectors. Secondary subatomic particles are created when cosmic rays and gamma rays interact with particles in the upper atmosphere.

By measuring and excluding muon particles — an elementary subatomic particle similar to the electron but 207 times heavier — physicists were able to backtrack the energy and origin of the incoming gamma rays that caused the showers. A total of 24 events caused by intense photons with energies higher than 100 trillion electronvolts were reported. To get a sense of the scale involved, regular photons that emanate from the sun — particles of visible light — have an energy of only a few electronvolts.

Now that scientists have experimental confirmation that high-energy photons reach Earth, they can elaborate a more precise model for how such particles are created and whether or not there’s a limit to how much energy they can carry.

In this particular case, researchers think that the gamma rays were accelerated by a process known as Inverse Compton scattering — a process during which super high-energy electrons bounce off lower energy photons. Inside the Crab Nebula, electrons may have scattered off low-energy photons from the cosmic microwave radiation (photons created soon after the Big Bang).

The findings appeared in the journal Physical Review Letters.

share Share

This Rare Viking Burial of a Woman and Her Dog Shows That Grief and Love Haven’t Changed in a Thousand Years

The power of loyalty, in this life and the next.

This EV Battery Charges in 18 Seconds and It’s Already Street Legal

RML’s VarEVolt battery is blazing a trail for ultra-fast EV charging and hypercar performance.

DARPA Just Beamed Power Over 5 Miles Using Lasers and Used It To Make Popcorn

A record-breaking laser beam could redefine how we send power to the world's hardest places.

Why Do Some Birds Sing More at Dawn? It's More About Social Behavior Than The Environment

Study suggests birdsong patterns are driven more by social needs than acoustics.

Nonproducing Oil Wells May Be Emitting 7 Times More Methane Than We Thought

A study measured methane flow from more than 450 nonproducing wells across Canada, but thousands more remain unevaluated.

CAR T Breakthrough Therapy Doubles Survival Time for Deadly Stomach Cancer

Scientists finally figured out a way to take CAR-T cell therapy beyond blood.

The Sun Will Annihilate Earth in 5 Billion Years But Life Could Move to Jupiter's Icy Moon Europa

When the Sun turns into a Red Giant, Europa could be life's final hope in the solar system.

Ancient Roman ‘Fast Food’ Joint Served Fried Wild Songbirds to the Masses

Archaeologists uncover thrush bones in a Roman taberna, challenging elite-only food myths

A Man Lost His Voice to ALS. A Brain Implant Helped Him Sing Again

It's a stunning breakthrough for neuroprosthetics

This Plastic Dissolves in Seawater and Leaves Behind Zero Microplastics

Japanese scientists unveil a material that dissolves in hours in contact with salt, leaving no trace behind.