homehome Home chatchat Notifications


Early asteroids in our solar system may have been giant mudballs, not rocks

There are millions of asteroids in our solar system. Be them the size of France or a small bus, these space rocks can be found through out the solar system, and have recently become the subject of entrepreneurial discussions, since even a single medium-sized asteroid is thought to carry trillions of dollars worth of rare […]

Tibi Puiu
March 20, 2013 @ 6:41 am

share Share

There are millions of asteroids in our solar system. Be them the size of France or a small bus, these space rocks can be found through out the solar system, and have recently become the subject of entrepreneurial discussions, since even a single medium-sized asteroid is thought to carry trillions of dollars worth of rare materials, like platinum and rare earth minerals. While our current understanding of modern day asteroids is rather slim, that of ancient asteroids is even poorer and controversial.

Most of the asteroids in our solar system have been around of billions of years, but how were they shaped to their current form today and where did they come from? Phil Bland, a planetary scientist at Curtin University in Perth, Australia  is trying his best to fit at least a few bits of the giant puzzle together, and is keen on studying early asteroids.

Scientists are currently bewildered by seemingly contradictory formation models. For instance, meteorites – chunks of asteroids – that crashed into Earth show textural signs of water flowing through them. Chemical analysis however suggests that no water had flowed through them, since the chemical make-up is constant. So, the asteroid insides had and didn’t have at the same time water flowing through them. Quite the paradox, and while most theories consider ancient asteroids as being rock, Bland has taken a different approach – he believes these were initially mud-like, resembling more “cowpats” than rock.

asteroid ceres and cesta

Bland and colleagues first considered a couple of model primordial asteroids, 100 kilometers in diamater, made out of unconsolidated mixtures of coarse and fine particles, plus ice. Numerical simulations were ran and over the course of millions of years heat produced by the decay of radioactive elements began melting ice deeper inside the asteroid. Like a boiling pot of water, the ancient asteroid interior’s started churning with strong convective motions. This continued for millions of years, again, until the radioactivity decayed –  long enough to mix everything so thoroughly that the overall chemical make-up ends up constant, which would explain the paradox.

“If you say the system was melting and convecting because it was mud, then it becomes a more tractable problem,” says Steven Hauck, a planetary scientist at Case Western Reserve University in Cleveland, Ohio.

This is a highly difficult to prove theory, however. Bland hopes that once with the deployment of NASA’s Dawn mission in 2015 towards the largest asteroid in our solar system – the 1,000 kilometer wide Ceres asteroid – that evidence which might prove or disprove his simulations might surface.

The ancient mud-asteroid theory was presented in the journal Nature.

share Share

The Sun Will Annihilate Earth in 5 Billion Years But Life Could Move to Jupiter's Icy Moon Europa

When the Sun turns into a Red Giant, Europa could be life's final hope in the solar system.

A Massive Particle Blasted Through Earth and Scientists Think It Might Be The First Detection of Dark Matter

A deep-sea telescope may have just caught dark matter in action for the first time.

Scientists Used Lasers To Finally Explain How Tiny Dunes Form -- And This Might Hold Clues to Other Worlds

Decoding how sand grains move and accumulate on Earth can also help scientists understand dune formation on Mars.

Astronomers Claim the Big Bang May Have Taken Place Inside a Black Hole

Was the “Big Bang” a cosmic rebound? New study suggests the Universe may have started inside a giant black hole.

Astronomers Just Found the Most Powerful Cosmic Event Since the Big Bang. It's At Least 25 Times Stronger Than Any Supernova

The rare blasts outshine supernovae and reshape how we study black holes.

Terraforming Mars Might Actually Work and Scientists Now Have a Plan to Try It

Can we build an ecosystem on Mars — and should we?

New Simulations Suggest the Milky Way May Never Smash Into Andromeda

A new study questions previous Milky Way - Andromeda galaxy collision assumptions.

China Is Building The First AI Supercomputer in Space

China wants to turn space satellites into a giant cloud server.

China and Russia Plan to Build a Nuclear Power Plant on the Moon by 2035 Leaving the US Behind

A new kind of space race unfolds on the moon's south pole.

A Decade After The Martian, Hollywood’s Mars Timeline Is Falling Apart

NASA hasn’t landed humans on Mars yet. But thanks to robotic missions, scientists now know more about the planet’s surface than they did when the movie was released.