homehome Home chatchat Notifications


What China's latest X-ray positioning satellite means for deep-space exploration

Made in China might become a stamp for innovation, not replication.

Tibi Puiu
November 30, 2016 @ 1:20 pm

share Share

A rendering of China's XPNAV-1 satellite (CAST).

A rendering of China’s XPNAV-1 satellite (CAST).

On November 10, aboard a Long March 11 rocket, China launched a suite of satellites into space. Among them was the innovative X-ray Pulsar Navigation 1 (XPNAV 1) satellite which is equipped with a world’s first instrument that offers X-ray-based navigation. Unlike classical satellites and spacecraft that rely on GPS-like features, the XPNAV 1 uses X-ray sources from space like those emitted by pulsars to triangulate its position. In other words, this tiny satellite is paving the way for a new class of spacecraft that will not only breach the final frontier but also find its way around it.

To send spacecraft to Jupiter or land them on a comet, scientists require deep space navigation with incredible precision, as otherwise, the spacecraft would just crash in the first junk it encounters in space. To navigate these spacecraft, we generally set our own planet as a reference point. We know Earth’s  orbital parameters and inherent motions very well, so it’s just a matter of measuring the craft’s distance from Earth, the component of its velocity that is directly toward or away from Earth, and its position in Earth’s sky. These parameters are then converted to a sun-centric model.

This workflow has worked very well so far, but what happens if you want to exit the solar system? Because the craft is now many billions of miles away from Earth, it’s much harder to track and navigation can become increasingly skewed. As the craft gets farther and farther away from Earth, it will eventually travel in the dark.

The XPNAV 1 bypasses these limitations by reading deep space X-ray pulses given off by pulsars —  highly magnetized, rotating neutron stars. The pulsar rapidly rotates around its own axis producing X-ray pulses at short intervals. The way your phone uses GPS to find your location is it sends electromagnetic pulses to multiple satellites then, based on the response time, it triangulates the position. Similarly, XPNAV 1 reads various X-ray pulses of predictable nature and location to locate itself with an accuracy of 5 kilometers (3.1 miles). The error sounds like a lot (it really is too close for comfort) but scientists believe they can get more accurate positioning by finding pulsars with more consistent pulses.

NASA has it’s own X-ray pulsar navigation satellite too, the Station Explorer for X-ray Timing and Navigation Technology (SEXTANT) mission. However, the satellite will launch in 2017 and China seems to have undercut NASA by a couple of months.

XPNAV 1 is innovative, a word you won’t normally use to describe something made in China, but that may soon change. China’s President Xi Jinping is betting on space big time and wants to triple government spending on scientific research. His hope is a new wave of innovations will come out of China, one that will inspire future generations and startups.

“China has been relying on the knowledge discovered by others,” said in a statement Wu Ji, director-general of the National Space Science Center, who’s spearheading the effort to lobby for more space missions with possible economic spinoffs. “If China wants to rejuvenate the economy, it needs to put more resources into developing groundbreaking technologies.”

As part of China’s ongoing five-year-plan, the nation hopes to produce 70 percent of key technology components—such as semiconductors and software— domestically by 2025.

Other major milestones for Chinese space exploration which happen this year include the launch of the Tiangong-2 space lab, the world’s first quantum science satellite and the debut of the new generation Long March 7 rocket.

share Share

This Rare Viking Burial of a Woman and Her Dog Shows That Grief and Love Haven’t Changed in a Thousand Years

The power of loyalty, in this life and the next.

This EV Battery Charges in 18 Seconds and It’s Already Street Legal

RML’s VarEVolt battery is blazing a trail for ultra-fast EV charging and hypercar performance.

DARPA Just Beamed Power Over 5 Miles Using Lasers and Used It To Make Popcorn

A record-breaking laser beam could redefine how we send power to the world's hardest places.

Why Do Some Birds Sing More at Dawn? It's More About Social Behavior Than The Environment

Study suggests birdsong patterns are driven more by social needs than acoustics.

Nonproducing Oil Wells May Be Emitting 7 Times More Methane Than We Thought

A study measured methane flow from more than 450 nonproducing wells across Canada, but thousands more remain unevaluated.

CAR T Breakthrough Therapy Doubles Survival Time for Deadly Stomach Cancer

Scientists finally figured out a way to take CAR-T cell therapy beyond blood.

The Sun Will Annihilate Earth in 5 Billion Years But Life Could Move to Jupiter's Icy Moon Europa

When the Sun turns into a Red Giant, Europa could be life's final hope in the solar system.

Ancient Roman ‘Fast Food’ Joint Served Fried Wild Songbirds to the Masses

Archaeologists uncover thrush bones in a Roman taberna, challenging elite-only food myths

A Man Lost His Voice to ALS. A Brain Implant Helped Him Sing Again

It's a stunning breakthrough for neuroprosthetics

This Plastic Dissolves in Seawater and Leaves Behind Zero Microplastics

Japanese scientists unveil a material that dissolves in hours in contact with salt, leaving no trace behind.