homehome Home chatchat Notifications


Black Holes could stunt the growth of dwarf galaxies

In smaller galaxies, large-scale winds from active black holes could hinder the formation of stars.

Rob Lea
October 14, 2019 @ 11:32 pm

share Share

NGC1569 is a star-forming galaxy. Galaxies such as this could see their star formation rates affected by strong winds emanating from a central black hole. (HST/NASA/ESA)
NGC1569 is a star-forming galaxy. Galaxies such as this could see their star formation rates affected by strong winds emanating from a central black hole. (HST/NASA/ESA)

Black holes at the centre of small dwarf galaxies could slow or even halt the formation of stars via the powerful winds they produce, researchers from University of California, Riverside, have discovered. This suppression of star-formation could have a marked influence on the evolution of such galaxies.

The result seems to confirm the long-held suspicion that supermassive black holes at the centre of galaxies can influence that galaxy’s evolution — including how they grow and the way that they age. But, the research also delivers a surprise; the winds that the astronomers measured coming from the black hole were more powerful than the team reckoned for. This means that models of star formation in dwarf galaxies may require a rethink.

“We expected we would need observations with much higher resolution and sensitivity, and we had planned on obtaining these as a follow-up to our initial observations,” said Gabriela Canalizo, a professor of physics and astronomy at UC Riverside who led the research team. “But we could see the signs strongly and clearly in the initial observations.

“The winds were stronger than we had anticipated.”

Gabriela Canalizo

Thus meaning that black holes don’t just influence the development of larger galaxies, but also play a role in the evolution of smaller dwarf galaxies — galaxies containing anywhere from a few thousand to a few billion stars.

Canalizo continues: “Our findings now indicate that their effect can be just as dramatic, if not more dramatic, in dwarf galaxies in the universe.”

The study — the results of which are discussed in the Astrophysical Journal — used data collected in the Sloan Digital Sky Survey (SDSS), a project which maps 35% of the sky above Earth. In doing so, the survey has been able to identify 50 dwarf galaxies — 29 of which demonstrated clear characteristics of possessing black holes at their centres. A further six of these showed evidence of high-velocity outflows of ionised gas — the powerful winds in question.

The next step for the researchers was to use the Keck telescopes — based in Hawaii — to both detect and measure the properties of these winds, marking the first time this has been achieved.

Discussing what her team found, Canalizo adds: “We found some evidence that these winds may be changing the rate at which the galaxies are able to form stars.”

Studying dwarf galaxies could be the key to understanding how galaxies in general evolve

The study of these smaller galaxies could help scientists answer lingering about galactic evolution in general.

“Larger galaxies often form when dwarf galaxies merge together,” explains Christina Manzano-King, a doctoral student in Canalizo’s lab and the first author of the paper. As a consequence of this, she continues, dwarf galaxies are particularly useful in understanding how galaxies evolve.

Dwarf galaxies hosting active galactic nuclei that have spatially extended outflows. (SDSS)
Dwarf galaxies hosting active galactic nuclei that have spatially extended outflows. (SDSS)

“Dwarf galaxies are small because after they formed, they somehow avoided merging with other galaxies,” she adds. “Thus, they serve as fossils by revealing what the environment of the early universe was like.

“Dwarf galaxies are the smallest galaxies in which we are directly seeing winds — gas flows up to 1,000 kilometres per second — for the first time.”

Christina Manzano-King

Explaining what causes these powerful winds, Manzano-KIng points to material being fed into the black hole. This material — usually gas and dust — forms an accretion disc around the black hole. In this disc — which gradually feeds the black hole — conditions are so violent that friction and tremendous tidal forces heats the material. This releases radiative energy which shoves gas out of the galaxy’s centre and into intergalactic space.

This negatively affects the amount of gas available for star formation.

Manzano-King continues: “What’s interesting is that these winds are being pushed out by active black holes in the six dwarf galaxies rather than by stellar processes such as supernovae.

“Typically, winds driven by stellar processes are common in dwarf galaxies and constitute the dominant process for regulating the amount of gas available in dwarf galaxies for forming stars.”

Astronomers believe that winds emanating from black holes can compress gas and thus aid the gravitational collapse of gas clouds, kick-starting star-formation. But, if the wind is too strong and thus expels gas from the galaxy’s centre, rather than aiding the star formation process, gas becomes unavailable and hinders the process.

This is exactly what appears to be happening in the six galaxies that the team’s research highlighted. In these cases, the wind has had a clear detrimental impact on star formation rates.

Rethinking the relationship between black holes and star formation rates

This research may result in a rethinking of models of star formation and the evolution of galaxies. Current models do not take into account the impact of black holes in dwarf galaxies.

From left to right: Laura Sales, Christina Manzano-King, and Gabriela Canalizo. The team’s research could force a rethinking of star formation rates in dwarf galaxies ( Stan Lim, UC Riverside)
From left to right: Laura Sales, Christina Manzano-King, and Gabriela Canalizo. The team’s research could force a rethinking of star formation rates in dwarf galaxies ( Stan Lim, UC Riverside)

“Our findings show that galaxy formation models must include black holes as important, if not dominant, regulators of star formation in dwarf galaxies,” points out Laura V. Sales, assistant professor of physics and astronomy at UC Riverside.

As for the future of this research, the team next plans to investigate characteristics of gas outflows such as mass and momentum.

“This would better inform theorists who rely on such data to build models,” concludes Manzano-King. “These models, in turn, teach observational astronomers just how the winds affect dwarf galaxies.

“We also plan to do a systematic search in a larger sample of the Sloan Digital Sky Survey to identify dwarf galaxies with outflows originating in active black holes.”


Original research: ‘AGN-Driven Outflows in Dwarf Galaxies’ Christina M. Manzano-King, Gabriela Canalizo, and Laura V. Sales.

share Share

Frozen Wonder: Ceres May Have Cooked Up the Right Recipe for Life Billions of Years Ago

If this dwarf planet supported life, it means there were many Earths in our solar system.

Space Solar Panels Could Cut Europe’s Reliance on Land-Based Renewables by 80 Percent

A new study shows space solar panels could slash Europe’s energy costs by 2050.

Astronomers See Inside The Core of a Dying Star For the First Time, Confirm How Heavy Atoms Are Made

An ‘extremely stripped supernova’ confirms the existence of a key feature of physicists’ models of how stars produce the elements that make up the Universe.

Scientists Master the Process For Better Chocolate and It’s Not in the Beans

Researchers finally control the fermentation process that can make or break chocolate.

Most Countries in the World Were Ready for a Historic Plastic Agreement. Oil Giants Killed It

Diplomats from 184 nations packed their bags with no deal and no clear path forward.

Scientists May Have Found a New Mineral on Mars. It Hints The Red Planet Stayed Warm Longer

Scientists trace an enigmatic infrared band to heated, oxygen-altered sulfates.

A Comet That Exploded Over Earth 12,800 Years Ago May Have Triggered Centuries of Bitter Cold

Comet fragments may have sparked Earth’s mysterious 1,400-year cold spell.

Are you really allergic to penicillin? A pharmacist explains why there’s a good chance you’re not − and how you can find out for sure

We could have some good news.

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

Bright, polarized, and unseen in any other light — Punctum challenges astrophysical norms.

Archaeologists Find 2,000-Year-Old Roman ‘Drug Stash’ Hidden Inside a Bone

Archaeologists have finally proven that Romans used black henbane. But how did they use it?