homehome Home chatchat Notifications


Auroras act like speed bumps for satellites, dragging them down towards Earth

Auroras are dazzling to behold, but also a nuisance for the aerospace industry.

Tibi Puiu
April 25, 2019 @ 10:57 pm

share Share

Credit: Wikimedia Commons.

Credit: Wikimedia Commons.

Auroras are some of the most dazzling light shows in the world but for the aerospace industry, they can be a real nuisance that could cost billions in damages. According to recent research, northern and southern lights cause satellites to slow down, which brings them closer to Earth. And if the satellites don’t have any more fuel left to boost them back to their intended orbits, they will eventually fall into Earth’s atmosphere.

For decades, scientists have been aware that when the sun’s activity is high, orbiting satellites tend to slow down. Auroras are caused by charged particles like electrons that interact with molecules from a planet’s atmosphere or magnetosphere. Scientists suspected that the charged particles also loft pockets of air high enough for satellites to interact with them. The drag caused by the air molecules would then slow the satellites, pulling them closer to Earth. Now, a recent mission has confirmed that this theory is probably true.

In 2015, scientists launched the Rocket Experiment for Neutral Upwelling 2 (RENU2) straight into the northern lights in order to understand how solar activity alters the atmosphere. The mission focused on Poleward Moving Auroral Forms (PMAFs), a type of fainter auroras which appear as dancing clouds on dark nights in high latitudes. The reason why PMAFs are o particular interest in this kind of research is that they form higher in the atmosphere and are less energetic than the more common and spectacular auroras. PMAFs dance at about 150 to 250 miles above the surface while most auroras typically form at an altitude of only 60 miles.

Researchers at the University of New Hampshire who led the project found that although PMAFs are weaker than most forms of auroras, their energy was still high enough to heat air pockets, causing them to drift upwards. As an analogy, the researchers likened the phenomenon to bubbles rising in a lava lamp. The study also found that the PMAF’s activity isn’t uniform but rather acts in narrow wisps that collectively affect areas larger than ten miles across. PMAFs also ebb and flow, changing their structure within minutes.

In the future, this kind of information will help engineers design safer satellites that can remain operational in orbit for longer.

The results appeared in the journal Geophysical Research Letters

share Share

The world’s largest wildlife crossing is under construction in LA, and it’s no less than a miracle

But we need more of these massive wildlife crossings.

Your gold could come from some of the most violent stars in the universe

That gold in your phone could have originated from a magnetar.

Ronan the Sea Lion Can Keep a Beat Better Than You Can — and She Might Just Change What We Know About Music and the Brain

A rescued sea lion is shaking up what scientists thought they knew about rhythm and the brain

Did the Ancient Egyptians Paint the Milky Way on Their Coffins?

Tomb art suggests the sky goddess Nut from ancient Egypt might reveal the oldest depiction of our galaxy.

Dinosaurs Were Doing Just Fine Before the Asteroid Hit

New research overturns the idea that dinosaurs were already dying out before the asteroid hit.

Denmark could become the first country to ban deepfakes

Denmark hopes to pass a law prohibiting publishing deepfakes without the subject's consent.

Archaeologists find 2,000-year-old Roman military sandals in Germany with nails for traction

To march legionaries across the vast Roman Empire, solid footwear was required.

Mexico Will Give U.S. More Water to Avert More Tariffs

Droughts due to climate change are making Mexico increasingly water indebted to the USA.

Chinese Student Got Rescued from Mount Fuji—Then Went Back for His Phone and Needed Saving Again

A student was saved two times in four days after ignoring warnings to stay off Mount Fuji.

The perfect pub crawl: mathematicians solve most efficient way to visit all 81,998 bars in South Korea

This is the longest pub crawl ever solved by scientists.