homehome Home chatchat Notifications


Pulsars with black holes could hold the 'holy grail' of gravity

Pulsars and black holes, two of the most enigmatic celestial bodies in the Universe may actually hold the key to understanding how Einstein’s theory of relativity and gravity interact. A pulsar is a highly magnetized, rotating neutron star that emits a beam of electromagnetic radiation. Pulsars are from when a star that turns becomes a supernova and then […]

Dragos Mitrica
December 5, 2014 @ 8:55 am

share Share

Pulsars and black holes, two of the most enigmatic celestial bodies in the Universe may actually hold the key to understanding how Einstein’s theory of relativity and gravity interact.

Artistic depiction of a pulsar and the emitted radiation. Image via National Radio Astronomy Observatory.

A pulsar is a highly magnetized, rotating neutron star that emits a beam of electromagnetic radiation. Pulsars are from when a star that turns becomes a supernova and then collapses into a neutron star; the neutron star maintains its angular momentum, but because it has lost most of its mass, it starts to spin incredibly fast –  usually between a 2 and 50 times per second! The longest known spin period is just over 8 seconds. Due to this spin, pulsars are also excellent time keepers, as they emit intermittent light at regular intervals. Now, researchers believe that pulsars could be used to put Einstein’s theory of relativity to the test, especially if a pulsar would be found in the vicinity of a black hole. The only problem is that so far, this scenario has never been encountered.

“Pulsars act as very precise timekeepers, such that any deviation in their pulses can be detected,” Diego F. Torres, ICREA researcher from the Institute of Space Sciences (IEEC-CSIC), explains. “If we compare the actual measurements with the corrections to the model that we have to use in order for the predictions to be correct, we can set limits or directly detect the deviation from the base theory.”

Deviations mentioned by Torres occur when there is an object with significant mass close to the pulsar; in the lack of a black hole, that’s usually a white dwarf or another neutron star. By analyzing the interactions between pulsar-white dwarf or pulsar-neutron star interactions, astrophysicists can put not only the theory of gravity, but also Einstein’s relativity to the test. In the theory of relativity, the gravitational movement of a body results from the accelerating force exerted by the gravitational fields and nothing else. It is relatively constant in direction and magnitude. In other words, if you set up a free-fall experiment in a laboratory, the results will be independent on where the laboratory is in space and time and will depend only on the gravitational force(s).

This has been confirmed by previous observations, but in a new study, Torres and his colleague Manjari Bagchi argue that if you really want to put this idea to the test, you need to find a pulsar-black hole system; all that’s left now… is to actually find one.

share Share

The Universe’s First “Little Red Dots” May Be a New Kind of Star With a Black Hole Inside

Mysterious red dots may be a peculiar cosmic hybrid between a star and a black hole.

Peacock Feathers Can Turn Into Biological Lasers and Scientists Are Amazed

Peacock tail feathers infused with dye emit laser light under pulsed illumination.

Helsinki went a full year without a traffic death. How did they do it?

Nordic capitals keep showing how we can eliminate traffic fatalities.

Scientists Find Hidden Clues in The Alexander Mosaic. Its 2 Million Tiny Stones Came From All Over the Ancient World

One of the most famous artworks of the ancient world reads almost like a map of the Roman Empire's power.

Ancient bling: Romans May Have Worn a 450-Million-Year-Old Sea Fossil as a Pendant

Before fossils were science, they were symbols of magic, mystery, and power.

This AI Therapy App Told a Suicidal User How to Die While Trying to Mimic Empathy

You really shouldn't use a chatbot for therapy.

This New Coating Repels Oil Like Teflon Without the Nasty PFAs

An ultra-thin coating mimics Teflon’s performance—minus most of its toxicity.

Why You Should Stop Using Scented Candles—For Good

They're seriously not good for you.

People in Thailand were chewing psychoactive nuts 4,000 years ago. It's in their teeth

The teeth Chico, they never lie.

To Fight Invasive Pythons in the Everglades Scientists Turned to Robot Rabbits

Scientists are unleashing robo-rabbits to trick and trap giant invasive snakes