homehome Home chatchat Notifications


Water churned up from Saturn's depths by massive storm

If you were to look at them from the safety and serenity of your home, the gas giants of our solar system seem to be quite peaceful. Their surface appears smooth, unscathed by meteor impacts or other such phenomena – but this couldn’t be further from the truth, as they sometimes show us. In 2010, […]

Mihai Andrei
September 5, 2013 @ 8:08 am

share Share

If you were to look at them from the safety and serenity of your home, the gas giants of our solar system seem to be quite peaceful. Their surface appears smooth, unscathed by meteor impacts or other such phenomena – but this couldn’t be further from the truth, as they sometimes show us.

saturn

In 2010, Saturn began stirring things up, with a giant storm; the storm quickly grew to amazing proportions, reaching 15,000 kilometers (more than 9,300 miles) in width and visible to amateur astronomers on Earth as a great white spot dancing across the surface of the planet.

Now, thanks to near-infrared spectral measurements taken by NASA’s evergreen Cassini orbiter and analysis conducted by the University of Wisconsin-Madison, Saturn’s superstorm is helping researchers understand more about the planet’s deep atmosphere – at heighs typically obscured by a thick haze.

The size of this storm is just mind blowing: 15.000 km wide, 300 km long, covering an entire surface of 4,500,000,000 square km. Just so you can get a term of comparison, the size of the Earth is 510,000,000 square km – almost 1.000 times less!

Astronomers found that loud particles at the top of the great storm are composed of a mix of three substances: water ice, ammonia ice, and… something else, which is yet to be identified – possibly ammonium hydrosulfide. The phenomena which brought these substances forth is also significant.

“We think this huge thunderstorm is driving these cloud particles upward, sort of like a volcano bringing up material from the depths and making it visible from outside the atmosphere,” explains Sromovsky, a senior scientist at UW-Madison and an expert on planetary atmospheres. “The upper haze is so optically pretty thick that it is only in the stormy regions where the haze is penetrated by powerful updrafts that you can see evidence for the ammonia ice and the water ice. Those storm particles have an infrared color signature that is very different from the haze particles in the surrounding atmosphere.”

The new work also helps to validate current models of Saturn storms, giving us a better understanding of gas giant atmospheric processes.

“The water could only have risen from below, driven upward by powerful convection originating deep in the atmosphere. The water vapor condenses and freezes as it rises. It then likely becomes coated with more volatile materials like ammonium hydrosulfide and ammonia as the temperature decreases with their ascent,” Sromovsky adds.

Journal Reference:
L.A. Sromovsky, K.H. Baines, P.M. Fry. Saturn’s Great Storm of 2010–2011: Evidence for ammonia and water ices from analysis of VIMS spectra. Icarus, 2013; 226 (1): 402 DOI: 10.1016/j.icarus.2013.05.043

share Share

Uranus Is Hotter than We Thought and Probably Deserves a Visit

Uranus is heating up from the inside.

Earth Is Spinning Faster Than Usual. Scientists Aren’t Sure Why

Shorter days ahead as Earth's rotation speeds up unexpectedly.

These bizarre stars could be burning darkness to survive

Our quest for dark matter is sending us on some wild adventures.

Interstellar comet: Everything We Know About 3I/ATLAS

The visitor is simply passing through our solar system.

This Colorful Galaxy Map Is So Detailed You Can See Stars Being Born

Astronomers unveil the most detailed portrait yet of a nearby spiral galaxy’s complex inner life

A NASA Spacecraft Just Spotted a Volcano on Mars Like We Have Never Seen Before

NASA's Mars Odyssey captures a surreal new image of Arsia Mons at sunrise

Astronomers Found a Volcano Hiding in Plain Sight on Mars

It's not active now, and it hasn't been active for some time, but it's a volcano.

These Galaxies are Colliding at Two Million Miles Per Hour in Deep Space

A galactic pileup 94 million light-years away is giving astronomers a detailed look at how cosmic collisions shape the universe.

Your gold could come from some of the most violent stars in the universe

That gold in your phone could have originated from a magnetar.

Have scientists really found signs of alien life on K2-18b?

Extraordinary claims require extraordinary evidence. We're not quite there.