homehome Home chatchat Notifications


3-D printed rocket engine made by NASA passes test with flying colors

Over the last three years, NASA engineers have been exploring using additive technology, like 3D printing, to manufacture key rocket engine parts. Tests on individual parts had worked well. Now, the space agency fitted all the parts onto a special test bench that behaves like a real rocket engine and fired it up for a test. The engine fired at 90,000 RPMs for 10 seconds to produce 22,000 pounds of thrust, with all performance test parameters showing 'green'.

Tibi Puiu
December 21, 2015 @ 3:21 pm

share Share

nasa 3d printed engien

Over the last three years, NASA engineers have been exploring using additive technology, like 3D printing, to manufacture key rocket engine parts. Tests on individual parts had worked well. Now, the space agency fitted all the parts onto a special test bench that behaves like a real rocket engine and fired it up for a test. The engine fired at 90,000 RPMs for 10 seconds to produce 22,000 pounds of thrust, with all performance test parameters showing ‘green’.

3d-printed-rocket-part-test

A liquid oxygen/gaseous hydrogen rocket injector assembly built using 3D printing technology is hot-fire tested at NASA Glenn Research Center’s Rocket Combustion Laboratory in Cleveland, Ohio.
Credit: NASA Glenn Research Center

Printing a rocket engine

Additive tech is considered a key technology in the future for space flight. When done right, it makes parts sturdier, while significantly reducing production costs and time. Some of the most important components 3-D printed at NASA include injectors and a turbopump. The complex turbopump had 45 percent fewer parts than those made with traditional welding and assembly techniques., while the injector had 200 fewer parts. Moreover, these components have unique features otherwise impossible to make using traditional manufacturing techniques. Valves that usually a ready in a year were made by NASA in a couple of months.

We manufactured and then tested about 75 percent of the parts needed to build a 3-D printed rocket engine,” said Elizabeth Robertson, the project manager for the additively manufactured demonstrator engine at NASA’s Marshall Space Flight Center in Huntsville, Alabama. “By testing the turbopumps, injectors and valves together, we’ve shown that it would be possible to build a 3-D printed engine for multiple purposes such as landers, in-space propulsion or rocket engine upper stages.”

Engineers prepare a 3-D printed breadboard engine made up of 75 percent of the parts needed to build a rocket engine for a test at NASA’s Marshall Space Flight Center in Huntsville, Alabama. Credits: NASA/MSFC/Emmett Given

Engineers prepare a 3-D printed breadboard engine made up of 75 percent of the parts needed to build a rocket engine for a test at NASA’s Marshall Space Flight Center in Huntsville, Alabama.
Credits: NASA/MSFC/Emmett Given

Of course, NASA used a highly specialized printer for metal works that builds each part by layering metal powder and fusing it together with a laser. Each 3-D printed engine part was then fitted together in a configuration that emulates a real engine.

“In engineering lingo, this is called a breadboard engine,” explained Nick Case, the testing lead for the effort. “What matters is that the parts work the same way as they do in a conventional engine and perform under the extreme temperatures and pressures found inside a rocket engine.

The NASA engineers fired the engine with cryogenic liquid hydrogen and oxygen, but they plan on using  liquid oxygen and methane. These propellants can be made directly on-site on Mars, so there’s a great interest.

“These NASA tests drive down the costs and risks associated with using additive manufacturing, which is a relatively new process for making aerospace quality parts,” said Robertson. “Vendors who had never worked with NASA learned how to make parts robust enough for rocket engines. What we’ve learned through this project can now be shared with American companies and our partners.”

“This new manufacturing process really opened the design space and allowed for part geometries that would be impossible with traditional machining or casting methods,” said David Eddleman, one Marshall’s propulsion designers. “For the valve designs on this engine, we used more efficient structures in the piece parts that resulted in optimized performance.”

share Share

AI 'Reanimated' a Murder Victim Back to Life to Speak in Court (And Raises Ethical Quandaries)

AI avatars of dead people are teaching courses and testifying in court. Even with the best of intentions, the emerging practice of AI ‘reanimations’ is an ethical quagmire.

This Rare Viking Burial of a Woman and Her Dog Shows That Grief and Love Haven’t Changed in a Thousand Years

The power of loyalty, in this life and the next.

This EV Battery Charges in 18 Seconds and It’s Already Street Legal

RML’s VarEVolt battery is blazing a trail for ultra-fast EV charging and hypercar performance.

DARPA Just Beamed Power Over 5 Miles Using Lasers and Used It To Make Popcorn

A record-breaking laser beam could redefine how we send power to the world's hardest places.

Why Do Some Birds Sing More at Dawn? It's More About Social Behavior Than The Environment

Study suggests birdsong patterns are driven more by social needs than acoustics.

Nonproducing Oil Wells May Be Emitting 7 Times More Methane Than We Thought

A study measured methane flow from more than 450 nonproducing wells across Canada, but thousands more remain unevaluated.

CAR T Breakthrough Therapy Doubles Survival Time for Deadly Stomach Cancer

Scientists finally figured out a way to take CAR-T cell therapy beyond blood.

The Sun Will Annihilate Earth in 5 Billion Years But Life Could Move to Jupiter's Icy Moon Europa

When the Sun turns into a Red Giant, Europa could be life's final hope in the solar system.

Ancient Roman ‘Fast Food’ Joint Served Fried Wild Songbirds to the Masses

Archaeologists uncover thrush bones in a Roman taberna, challenging elite-only food myths

A Man Lost His Voice to ALS. A Brain Implant Helped Him Sing Again

It's a stunning breakthrough for neuroprosthetics