homehome Home chatchat Notifications


X-Rays and lensing tricks help researchers spot black hole spin

A black hole was spinning as fast as is theoretically possible.

Mihai Andrei
July 9, 2019 @ 5:21 pm

share Share

Gravitational lensing enabled a team of researchers to measure the spin of five black holes — and one was spinning as fast as is theoretically possible.

Image credits: NASA/CXC/Univ. of Oklahoma/X. Dai et al.

It’s pretty hard to learn new things about something you can’t even see, yet in the new study, that’s exactly what researchers have accomplished: they’ve gauged the spin of five supermassive black holes using a combination of data from the Chandra X-Ray Observatory and chance alignments.

When black holes are spinning, they create whirlpool-like perturbations in the galaxies around them. However, instead of eddy currents, black holes produce bright disks of gas and light which glow brightly in x-ray light. But that isn’t enough.

The process was also facilitated by something called microlensing — a type of phenomenon produced by the gravitational lens effect. Essentially, the phenomenon describes how the distribution of extremely heavy matter between a light source and an observer is capable of bending the light as it travels. The light is distorted in a way that’s similar to a magnifying lens, but it requires a very specific alignment.

A light source passes behind a gravitational lens (point mass placed in the center of the image). The aqua circle is the light source as it would be seen if there was no lens, white spots are the multiple images of the source. Image via Wikipedia.

In this case, Chandra allowed the gathering of sharp images, in which the black holes were distinguishable from the multiple images produced by the lensing. From there, microlensing was used to detect the spin. A smaller emitting region corresponds to a tighter orbit and a faster spin speed — in other words, the smaller the region emitting X-rays, the faster the black hole spins.

Researchers were surprised to see that one particular hole was spinning at 670 million miles per hour which corresponds to 70% of the light speed. Four other black holes were spinning about half this speed, and for one, a reliable measurement couldn’t be taken because the conditions were not exactly right.

So how can the black hole spin so rapidly? Astronomers believe that it accumulated matter over billions of years, sucking in its initial accretion disk, as well as any matter in the area. If this matter (and particularly the accretion disk) was acquired in the direction of the spin, it’s like a carousel of constantly accelerating matter and the black hole continued to pick up speed.

Of course, observations like this one are rare because they require a very specific alignment, as well as very distant (and powerful) black holes — in this case, located from 8.8 billion to 10.9 billion light-years from Earth. They also require a lot of time from Chandra, as the photos were taken with total exposure times ranging between 1.7 and 5.4 days.

share Share

Scientists Solved a Key Mystery Regarding the Evolution of Life on Earth

A new study brings scientists closer to uncovering how life began on Earth.

AI has a hidden water cost − here’s how to calculate yours

Artificial intelligence systems are thirsty, consuming as much as 500 milliliters of water – a single-serving water bottle – for each short conversation a user has with the GPT-3 version of OpenAI’s ChatGPT system. They use roughly the same amount of water to draft a 100-word email message. That figure includes the water used to […]

Smart Locks Have Become the Modern Frontier of Home Security

What happens when humanity’s oldest symbol of security—the lock—meets the Internet of Things?

A Global Study Shows Women Are Just as Aggressive as Men with Siblings

Girls are just as aggressive as boys — when it comes to their brothers and sisters.

Birds Are Singing Nearly An Hour Longer Every Day Because Of City Lights

Light pollution is making birds sing nearly an hour longer each day

U.S. Mine Waste Contains Enough Critical Minerals and Rare Earths to Easily End Imports. But Tapping into These Resources Is Anything but Easy

The rocks we discard hold the clean energy minerals we need most.

Scientists Master the Process For Better Chocolate and It’s Not in the Beans

Researchers finally control the fermentation process that can make or break chocolate.

Most Countries in the World Were Ready for a Historic Plastic Agreement. Oil Giants Killed It

Diplomats from 184 nations packed their bags with no deal and no clear path forward.

Are you really allergic to penicillin? A pharmacist explains why there’s a good chance you’re not − and how you can find out for sure

We could have some good news.

Archaeologists Find 2,000-Year-Old Roman ‘Drug Stash’ Hidden Inside a Bone

Archaeologists have finally proven that Romans used black henbane. But how did they use it?