homehome Home chatchat Notifications


Whisker simulation could help us better understand how touch works

For all their cuteness, whiskers are extremely hard to study -- which is why simulations can help here.

Mihai Andrei
April 12, 2021 @ 11:00 pm

share Share

Image credits: Priscilla Du Preez.

Whiskers can come in different shapes and sizes, but they’re all essentially specialized bits of mammalian hair that work as tactile sensors. Whiskers don’t actually “feel” anything, but they transmit information to sensory cells. When air flows against a whisker or when the whisker encounters an object, the sensitive hair moves and stimulates the nerves in the hair follicle — all the sensors are in the follicle.

The magic happens at the base of the whisker, where the sensing information is received and transmitted to the brain. But you can’t even see it, because this structure is hidden inside the follicle. Because this part is obscured, researchers find it very difficult to study it directly.

“The part of the whisker that triggers touch sensors is hidden inside the follicle, so it’s incredibly difficult to study,” said Northwestern’s Mitra Hartmann, senior author of the study. “You can’t measure this process experimentally because if you slice open the follicle, then the damage would change the way the whisker is held. By developing new simulations, we can gain insights into biological processes that cannot be directly measured experimentally.”

Hartmann and colleagues developed the first mechanical simulation of the whisker inside the follicle, which they combined with anatomical observations to better understand the structure and function of this whisker “root”.

Mechanics is key to whisker tactile sensation. When a whisker is deflected, its deformation profile within the follicle determines the activity of different groups of mechanoreceptors. Image credit: Yifu Luo and Nadina Zweifel

They found that when whiskers touch an object, the follicle forms an “S”-shaped bend through which the whisker pushes or pulls on sensor cells, which then send the signal to the brain. According to the researchers’ models, this bending profile is likely similar regardless of whether the whisker moves to touch an object or the whisker is passively brushed by a moving object.

“Our model demonstrates consistency in the whisker deformation profile between passive touch and active whisking,” Luo said. “In other words, the same group of sensory cells will respond when the whisker is deflected in the same direction under both conditions. This result suggests that some types of experiments to study active whisking can be done in an anesthetized animal.”

Although the model is based on biological data from rats, researchers believe this applies to all whiskered animals.

“The sense of touch is incredibly important to nearly everything we do in the world, yet it is very difficult to study touch using hands,” Hartmann said. “Whiskers provide a simplified model to understand the complex, mysterious nature of touch.”

This is not the first study to look at whisker parameters. A 2016 paper showed how rats use whiskers to study the shape of objects and how neurons communicate whisker-detected touch.

Journal Reference:  Luo Y, Bresee CS, Rudnicki JW, Hartmann MJZ. Constraints on the deformation of the vibrissa within the follicle. PLoS Comput Biol 17(4): e1007887. doi.org/10.1371/journal.pcbi.1007887

share Share

We can still easily get AI to say all sorts of dangerous things

Jailbreaking an AI is still an easy task.

Scientists Solved a Key Mystery Regarding the Evolution of Life on Earth

A new study brings scientists closer to uncovering how life began on Earth.

AI has a hidden water cost − here’s how to calculate yours

Artificial intelligence systems are thirsty, consuming as much as 500 milliliters of water – a single-serving water bottle – for each short conversation a user has with the GPT-3 version of OpenAI’s ChatGPT system. They use roughly the same amount of water to draft a 100-word email message. That figure includes the water used to […]

Smart Locks Have Become the Modern Frontier of Home Security

What happens when humanity’s oldest symbol of security—the lock—meets the Internet of Things?

A Global Study Shows Women Are Just as Aggressive as Men with Siblings

Girls are just as aggressive as boys — when it comes to their brothers and sisters.

Birds Are Singing Nearly An Hour Longer Every Day Because Of City Lights

Light pollution is making birds sing nearly an hour longer each day

U.S. Mine Waste Contains Enough Critical Minerals and Rare Earths to Easily End Imports. But Tapping into These Resources Is Anything but Easy

The rocks we discard hold the clean energy minerals we need most.

Scientists Master the Process For Better Chocolate and It’s Not in the Beans

Researchers finally control the fermentation process that can make or break chocolate.

Most Countries in the World Were Ready for a Historic Plastic Agreement. Oil Giants Killed It

Diplomats from 184 nations packed their bags with no deal and no clear path forward.

Are you really allergic to penicillin? A pharmacist explains why there’s a good chance you’re not − and how you can find out for sure

We could have some good news.