homehome Home chatchat Notifications


Wheat's genetic secrets could lead to better, more resilient crops

More food for less effort? Sign me up!

Alexandru Micu
August 17, 2018 @ 3:34 pm

share Share

Wheat has a genome five times longer than yours — and now, it’s been fully sequenced.

Wheat.

Image credits Brad Higham / Flickr.

Staying true to their name, researchers at the International Wheat Genome Sequencing Consortium have published a paper containing the complete sequence of the wheat (genus Triticum) genome, a dataset that could help breed new crops.

Food-nome

Having access to the plant’s genome should help speed up the breeding of more resilient, disease-resistant, and higher-yield crops. Wheat is currently the most widely grown crop, providing more protein than meat in the human diet, and supplying roughly one-fifth of the total calories people consume. It’s also surprisingly complex from a genetic standpoint: its genome includes some 16 million base pairs, over five times larger than yours or mine.

Despite its genetic beefiness, wheat is quite vulnerable to floods, droughts, and several diseases (such as wheat rust) that can claim whole crops at a time. Luckily, now that we know the structure of its genome, we can modify it to add a whole lot of desirable characteristics — resilience to pests, higher yields, more nutritional value — into our crops.

Actually sequencing the genome, however, proved to be a significant challenge. Not only was it huge, it also included three sub-genomes — a large part of which included repetitive elements. This makes long stretches of the genome identical or very similar to each other, making it difficult to distinguish individual chains and re-constructing the overall genome.

The sequencing effort is detailed in two papers. The first, published by researchers from the. International Wheat Genome Sequencing Consortium, details the sequence of the plant’s 21 chromosomes. It also lists the location of 107,891 genes, more than 4 million molecular markers, as well as sequence elements between the genes that regulate their expression.

The second paper, led by a team at the John Innes Centre (JIC), aims to help breeders and researchers understand what trait each gene affects. This work is largely based on a technique known as ‘speed breeding’, previously developed at the JIC. Speed breeding involves the use of glasshouses to shorten the breedings cycles of plants. Combined with the wealth of genome information from the first paper, this helped the team significantly shorten the time required to test what each gene does.

“Genomic knowledge of other crops has driven progress in selecting and breeding important traits,” says Cristobal Uauy, Project Leader in crop genetics at the John Innes Centre says.

“Tackling the colossal wheat genome has been a Herculean challenge, but completing this work means we can identify genes controlling traits of interest more rapidly. This will facilitate and make more effective the breeding for traits like drought or disease resistance. Where previously we had a broad view and could spot areas of interest, we can now zoom into the detail on the map.”

Uauy cites past research estimating that the world will need 60% more wheat by 2050 to meet global demand. The research his team performed can be instrumental towards reaching that goal.

It’s not the first time researchers have fully decoded the genome of a cereal: just last year, an international research team published the full genome of barley.

The first paper, “Shifting the limits in wheat research and breeding using a fully annotated reference genome”, has been published in the journal Science.

The second paper “The transcriptional landscape of polyploid wheat” has been published in the journal Science.

share Share

Scientists Just Found Arctic Algae That Can Move in Ice at –15°C

The algae at the bottom of the world are alive, mobile, and rewriting biology’s rulebook.

New Type of EV Battery Could Recharge Cars in 15 Minutes

A breakthrough in battery chemistry could finally end electric vehicle range anxiety

How Bees Use the Sun for Navigation Even on Cloudy Days

Bees see differently than humans, for them the sky is more than just blue.

We can still easily get AI to say all sorts of dangerous things

Jailbreaking an AI is still an easy task.

Scientists Solved a Key Mystery Regarding the Evolution of Life on Earth

A new study brings scientists closer to uncovering how life began on Earth.

This Bizarre Deep Sea Fish Uses a Tooth-Covered Forehead Club to Grip Mates During Sex

Scientists studying a strange deep sea fish uncovered the first true teeth outside the jaw.

Daddy longlegs have two more eyes they've been hiding from us

The eyes are relics form their evolutionary past.

The "Skeleton flower" turns translucent when it comes in contact with water

The "skeleton form" is because of the unusual way the flower generates color.

AI has a hidden water cost − here’s how to calculate yours

Artificial intelligence systems are thirsty, consuming as much as 500 milliliters of water – a single-serving water bottle – for each short conversation a user has with the GPT-3 version of OpenAI’s ChatGPT system. They use roughly the same amount of water to draft a 100-word email message. That figure includes the water used to […]

Spiders Are Trapping Fireflies in Their Webs and Using Their Glow to Lure Fresh Prey

Trapped fireflies become bait in a rare case of predatory outsourcing.