homehome Home chatchat Notifications


Boiling-acid-proof virus' outer shell structure could inspire better medication, sturdier buildings

Not bad for such a small thing.

Alexandru Micu
July 20, 2017 @ 3:31 pm

share Share

The shell of a virus which calls boiling acid pools of Yellowstone home could show us the way to more powerful drugs, stronger materials, and more resilient buildings.

Viral shell.

The virus’ unusual envelope structure, never before seen in nature.
Image credits Peter Kasson et al., 2017.

First isolated in 2002 by Pasteur Institute researchers, the virus known as Acidianus hospitalis Filamentous Virus 1 is scaringly hard to kill. This bug lives in the hot-springs of Yellowstone National Park, pools of acid bubbling to temperatures as high as 237 degrees Celsius (455-ish degrees Fahrenheit), which can dissolve people.

Naturally, anything that can live in such conditions is bound to have some pretty impressive tricks up their sleeves — or up their viral casing, as an international team of researchers reports. The finding could open up new avenues of research into material sciences, with applications from pinpoint drug delivery mechanisms to earthquake-resistant buildings.

“Anytime you find something that behaves really differently, especially something this stable, it’s interesting and potentially useful,” says first author Peter M. Kasson, MD, PhD, from the University of Virginia School of Medicine Department of Molecular Physiology and Biological Physics

“When you’re doing curiosity-driven science that finds something new, in the back of your mind, you think, ‘Hey, this is really different. What might it be good for?’ And this has many potential applications.”

Thick-skinned

The secret behind the virus’ extreme resilience lies in its membrane, the team reports. Although it’s outer shell is only half as thick as known cell membranes, it’s ridiculously stable. The molecules which make up the membrane are stacked up in a horseshoe-shaped arrangement, creating a very dense and durable structure.

The team had to rely on the UVA’s Titan Krios electron microscope to probe the virus’ secrets. This device is so sensitive, that it had to be installed underground to insulate it from vibrations — the slightest of which would be enough to throw off its calibrations. Armed with these readings, the team turned to computer modeling to tease out the structure of the membrane’s lipid molecules.

“Essentially, we encode everything we know about the physics of these molecules and then come up with models that are both consistent with the basic physics and consistent with the observations from the electron microscope,” Kasson explains.

Duplicating this structure might help scientists paste the virus’ defenses into other materials. These could have a dramatic impact in construction, material science, every field where a super-resilient material could come in handy.

Nanomedicine stands to benefit a whole lot if we manage to reverse-engineer the virus’ shell. We could use the structures to create microscopic particles to protect drugs from our body’s effort to metabolize them, allowing for pinpoint delivery of more efficient drug doses. For example, injecting drugs directly into tumors.

 

“It’s amazing how much we still don’t know about life as it exists on Earth — at the bottom of the ocean, in the deep sea vents, or places like Yellowstone or Iceland where you have these very strange environments we think of as inhospitable to life,” paper co-author Edward Egelman said.

“But the things that live there, they may look at our environment and think, ‘Strange.'”

The paper “Model for a novel membrane envelope in a filamentous hyperthermophilic virus” has been published in the journal eLife.

share Share

The Universe’s First “Little Red Dots” May Be a New Kind of Star With a Black Hole Inside

Mysterious red dots may be a peculiar cosmic hybrid between a star and a black hole.

Peacock Feathers Can Turn Into Biological Lasers and Scientists Are Amazed

Peacock tail feathers infused with dye emit laser light under pulsed illumination.

Helsinki went a full year without a traffic death. How did they do it?

Nordic capitals keep showing how we can eliminate traffic fatalities.

Scientists Find Hidden Clues in The Alexander Mosaic. Its 2 Million Tiny Stones Came From All Over the Ancient World

One of the most famous artworks of the ancient world reads almost like a map of the Roman Empire's power.

Ancient bling: Romans May Have Worn a 450-Million-Year-Old Sea Fossil as a Pendant

Before fossils were science, they were symbols of magic, mystery, and power.

These wolves in Alaska ate all the deer. Then, they did something unexpected

Wolves on an Alaskan island are showing a remarkable adaptation.

This AI Therapy App Told a Suicidal User How to Die While Trying to Mimic Empathy

You really shouldn't use a chatbot for therapy.

This New Coating Repels Oil Like Teflon Without the Nasty PFAs

An ultra-thin coating mimics Teflon’s performance—minus most of its toxicity.

Why You Should Stop Using Scented Candles—For Good

They're seriously not good for you.

People in Thailand were chewing psychoactive nuts 4,000 years ago. It's in their teeth

The teeth Chico, they never lie.