homehome Home chatchat Notifications


Scientists develop world’s thinnest technology – only two atoms thick

It could be ground-breaking for modern tech devices

Fermin Koop
July 1, 2021 @ 11:04 pm

share Share

Researchers at Tel Aviv University have engineered what is currently the single smallest and thinnest piece of technology ever seen, with a thickness of just two atoms. The new invention uses quantum-mechanical electron tunneling, which allows information to travel through the thin film, and is able to store electric information, making it potentially applicable to all sorts of electronic devices.

In a screenshot from video released by Tel Aviv University on June 30, PhD student Maayan Wizner Stern uses tweezers to hold an electronic storage unit that is two-atoms thick. (Screen capture: YouTube)

Moshe Ben Shalom, who was involved in the project, said the research started from the team’s curiosity about the behavior of atoms and electrons in solid materials, which has generated the technology used by many modern devices. They tried to “predict and control” the properties of these particles, he added in a statement. 

“Our research stems from curiosity about the behavior of atoms and electrons in solid materials, which has generated many of the technologies supporting our modern way of life,” says Dr. Ben Shalom. “We (and many other scientists) try to understand, predict, and even control the fascinating properties of these particles as they condense into an ordered structure that we call a crystal. At the heart of the computer, for example, lies a tiny crystalline device designed to switch between two states indicating different responses — “yes” or “no,” “up” or “down” etc. Without this dichotomy — it is not possible to encode and process information. The practical challenge is to find a mechanism that would enable switching in a small, fast, and inexpensive device.

Modern devices have small crystals with a million atoms (one hundred atoms in height, width and thickness). This new development means that the crystals can be reduced to just two atoms thick, allowing the information to flow with greater speed and efficiency — which, if equal or comparable performance can be achieved, would make devices much more efficient.

For the study, the researchers used a two-dimensional material – one-atom-thick layers of boron and nitrogen, arranged in a repetitive hexagonal structure, drawing inspiration from graphene. They could break the symmetry of this crystal by artificially assembling two such layers “despite the strong repulsive force between them” due to their identical charges, Dr. Shalom explained. 

“In its natural three-dimensional state, this material is made up of a large number of layers placed on top of each other, with each layer rotated 180 degrees relative to its neighbors (antiparallel configuration)” said Dr. Shalom in a statement. “In the lab, we were able to artificially stack the layers in a parallel configuration with no rotation.” 

Maayan Wizner Stern, a PhD student who led the study, said the technology could have other applications beyond information storage, including detectors, energy storage and conversion and interaction with light. She hopes miniaturization and flipping through sliding will improve today’s electronic devices and allow new ways of controlling information in future devices. 

The new technology proposes a way for storing electric information in the thinnest unit known to science, in one of the most stable and inert materials in nature, the researchers said. The quantum-mechanical electron tunneling through the atomically thin film could boost the information reading process far beyond current technologies.

Researchers also expect the same approach to work with multiple crystals, potentially offering even more desirable properties. Wizner Stern concludes:

“We expect the same behaviors in many layered crystals with the right symmetry properties. The concept of interlayer sliding as an original and efficient way to control advanced electronic devices is very promising, and we have named it Slide-Tronics.”

The study has been published in the journal Science. 

share Share

This Flying Squirrel Drone Can Brake in Midair and Outsmart Obstacles

An experimental drone with an unexpected design uses silicone wings and AI to master midair maneuvers.

Oldest Firearm in the US, A 500-Year-Old Cannon Unearthed in Arizona, Reveals Native Victory Over Conquistadores

In Arizona’s desert, a 500-year-old cannon sheds light on conquest, resistance, and survival.

No, RFK Jr, the MMR vaccine doesn’t contain ‘aborted fetus debris’

Jesus Christ.

“How Fat Is Kim Jong Un?” Is Now a Cybersecurity Test

North Korean IT operatives are gaming the global job market. This simple question has them beat.

This New Atomic Clock Is So Precise It Won’t Lose a Second for 140 Million Years

The new clock doesn't just keep time — it defines it.

A Soviet shuttle from the Space Race is about to fall uncontrollably from the sky

A ghost from time past is about to return to Earth. But it won't be smooth.

The world’s largest wildlife crossing is under construction in LA, and it’s no less than a miracle

But we need more of these massive wildlife crossings.

Your gold could come from some of the most violent stars in the universe

That gold in your phone could have originated from a magnetar.

Ronan the Sea Lion Can Keep a Beat Better Than You Can — and She Might Just Change What We Know About Music and the Brain

A rescued sea lion is shaking up what scientists thought they knew about rhythm and the brain

Did the Ancient Egyptians Paint the Milky Way on Their Coffins?

Tomb art suggests the sky goddess Nut from ancient Egypt might reveal the oldest depiction of our galaxy.