homehome Home chatchat Notifications


The "most significant contribution AI has made to science": Google's AlphaFold will release the structure of every protein known to science

AI is done playing -- it's time to start dealing with real-world problems.

Mihai Andrei
July 24, 2021 @ 6:40 pm

share Share

It’s a striking development that could pave the way for discovering many new drugs for treating diseases. The same AI that surpassed humans in games like Go, chess, or Starcraft has now been used to predict the structures of almost every protein made by the human body.

DeepMind (an AI subsidiary of Alphabet, Google’s parent company) took the world by storm several times. Its “Alpha” series AI became very good at chess, becoming arguably the best chess player the world had ever seen; then, it mastered Go — a game that’s about 1 million trillion trillion trillion trillion times more complex than chess. After AlphaChess and AlphaGo, it even became good at things AIs don’t normally do well at, like computer games with incomplete information (such as Starcraft or even shooters).

Now, it’s done playing games and has produced possibly the greatest contribution of AI to science so far.

Hello world

Google did use the AI to figure out how to optimize and reduce its electricity consumption, but this is something else. Proteins are the building blocks of life of living organisms, and they’re packed into every cell of our bodies. To understand protein function and make full use of this information, researchers need to understand protein geometry and how they fold.

If you want to produce a treatment or an immune reaction in the body, and the protein used doesn’t fold appropriately, it could not only render the treatment useless, but even make it dangerous. Several degenerative diseases and allergies are caused by incorrect folding of some proteins, because the immune system doesn’t produce antibodies for some protein structures.

Predicting protein folding, however, is a tough job. Researchers have been struggling with it for decades, and even with advanced computers and software, it still takes a lot of effort. This is where DeepMind’s AI comes in.

In 2018, the team announced that AlphaFold 2 (the second version of the protein folding algorithm) has become quite good at predicting the 3D shapes of proteins, surpassing all other algorithms. Two years later, in 2020, DeepMind claimed its AI had become better than any existing algorithm by far. Now, the company has announced it’s predicted the shapes of nearly every protein in the human body as well as hundreds of thousands of other proteins found in 20 of the most widely studied organisms, including yeast, fruit flies, and mice — a trove of 350,000 proteins. Over the next few months, DeepMind says it will release the folding structure of another 100 million proteins — virtually all proteins known to science. The company also published full details of that tool and released its source code.

Credits: DeepMind.

Much like the Human Genome Project drove massive advancements in the field of medicine, a similar library for proteins (proteome) could drive a new revolution in medicine.

Dr. Demis Hassabis, chief executive and co-founder of DeepMind, told the BBC:

“We believe it’s the most complete and accurate picture of the human proteome to date.”

“And I think it’s a great illustration and example of the kind of benefits AI can bring to society.” He added: “We’re just so excited to see what the community is going to do with this.”

Confirming predictions

However, as promising as this all is, the predictions will also have to be verified by experiments.

AlphaFold’s predictions come with a confidence tool that estimates how close the predicted shape is to the real thing. For 36% of human proteins, it flagged correctly down to the level of individual atoms — which is good enough for drug development.

But even predictions that are not fully accurate can be useful. Over half of the predicted proteins are good enough to enable researchers to understand the proteins’ function. There’s still plenty of room for improvement, though, but this is enough of a database to be transformative.

For now, DeepMind is releasing all its tools and predictions for free to the scientific community, but it may have plans to make money from them in the future.

share Share

Scientists Turn Timber Into SuperWood: 50% Stronger Than Steel and 90% More Environmentally Friendly

This isn’t your average timber.

A Provocative Theory by NASA Scientists Asks: What If We Weren't the First Advanced Civilization on Earth?

The Silurian Hypothesis asks whether signs of truly ancient past civilizations would even be recognisable today.

Scientists Created an STD Fungus That Kills Malaria-Carrying Mosquitoes After Sex

Researchers engineer a fungus that kills mosquitoes during mating, halting malaria in its tracks

From peasant fodder to posh fare: how snails and oysters became luxury foods

Oysters and escargot are recognised as luxury foods around the world – but they were once valued by the lower classes as cheap sources of protein.

Rare, black iceberg spotted off the coast of Labrador could be 100,000 years old

Not all icebergs are white.

We haven't been listening to female frog calls because the males just won't shut up

Only 1.4% of frog species have documented female calls — scientists are listening closer now

A Hawk in New Jersey Figured Out Traffic Signals and Used Them to Hunt

An urban raptor learns to hunt with help from traffic signals and a mental map.

A Team of Researchers Brought the World’s First Chatbot Back to Life After 60 Years

Long before Siri or ChatGPT, there was ELIZA: a simple yet revolutionary program from the 1960s.

Almost Half of Teens Say They’d Rather Grow Up Without the Internet

Teens are calling for stronger digital protections, not fewer freedoms.

China’s Ancient Star Chart Could Rewrite the History of Astronomy

Did the Chinese create the first star charts?