homehome Home chatchat Notifications


Manhattan could halve its number of cars and people would still get where they need to go - if they rode smart

More silicon, less asphalt, says an MIT researcher.

Tibi Puiu
May 23, 2018 @ 9:03 pm

share Share

Credit: Pixabay.

Credit: Pixabay.

The advent of ride-sharing apps has been hailed as an inflection point in transportation. Companies like Uber and Lyft are severely disrupting transportation and will continue to transform the way people ride from A to B once self-driving cars become more common.

One of the most appealing things about ride sharing, from an environmental perspective, is that it makes car ownership redundant in many cases. As private car ownership is expected to shift toward shared mobility services, there should be a significant reduction of traffic in urban areas and greenhouse gas emissions. This is happening already, as evidenced by a previous study which focused on Austin, Texas, a city where Uber and Lyft were temporarily forced to cease operations due to a local ordinance. According to the study, 41% of those surveyed turned to their own vehicle to fill the void left by apps ceasing operations and 9% actually bought an additional car for this purpose.

However, in order for mobility services to operate at maximum efficiency, we require computationally efficient algorithms that can match people with on-demand vehicles. The problem is that this is a lot harder than it sounds. Even using today’s powerful computer, plotting the optimal routes with complex variables can be a daunting task, which is why good solutions for fleet management have been severely constrained in size, keeping them to a few tens of vehicles.

This is obviously not an option when dealing with big cities. New Yorkers, for instance, are served by approximately 13,500 taxis which make around 500,000 trips daily.

Researchers at MIT’s Senseable City Lab found a workaround, however. They recently unveiled a computationally efficient solution to this problem, which they dub the “minimum fleet problem.”

“We started looking into this problem motivated by the increasing trends toward shared mobility, which will likely become even stronger with the transition to autonomous vehicles,” says Ratti, who is also a professor of the practice in MIT’s Department of Urban Studies and Planning. “If demand for mobility is served by fleets of shared vehicles, a fundamental question is: How many vehicles do we need to serve the mobility needs of, say, a city such as New York?”

The MIT team wrote their algorithm by using variations of the “traveling salesman problem,” which aims to minimize the total distance traveled by a salesman who must visit a given number of destinations in a city.  In February 2018, the Washington Post reported that it would take at least 1,000 years for a computer to find an optimal route to only 22 points. However, the MIT researchers used a different approach —  a network-based model dubbed “vehicle sharing network”, which was previously used in 2014 to find the best way to share rides in a large city.

The algorithm represents the shareability of the taxi fleet as a graph — a mathematical structure amounting to a set of objects in which some pairs of the objects are, in some sense, “related.” Each trip is represented by a node, while the edges of the graph represent the fact that two trips can be served by a single vehicle.

In order to test their solution, Ratti and colleagues ran the algorithm using a data set of 150 million taxi trips taken in New York over the course of one year. The researchers learned that if their method was implemented, the fleet size could be reduced by 30% while still achieving the same service levels. An even greater reduction of vehicles would be achieved if the solution involved individuals sharing a journey, which the algorithm doesn’t take into account. Instead, the model simply reorganizes the whole taxi dispatching operation, which is enough to vastly optimize travel time. As more and more cars become networked and come with autonomous functions, this sort of model could become even more efficient and appealing.

“If we look at Manhattan as a whole, we could theoretically satisfy its mobility demand with approximately 140,000 vehicles — around half of today’s number,” he says. “This shows that tomorrow’s urban problems regarding mobility can be tackled not necessarily with more physical infrastructure but with more intelligence, or in other words: with more silicon and less asphalt.”

The findings appeared in the journal Nature. 

share Share

A Soviet shuttle from the Space Race is about to fall uncontrollably from the sky

A ghost from time past is about to return to Earth. But it won't be smooth.

The world’s largest wildlife crossing is under construction in LA, and it’s no less than a miracle

But we need more of these massive wildlife crossings.

The Fat Around Your Thighs Might Be Affecting Your Mental Health

New research finds that where fat is stored—not just how much you have—might shape your mood.

New Quantum Navigation System Promises a Backup to GPS — and It’s 50 Times More Accurate

An Australian startup’s device uses Earth's magnetic field to navigate with quantum precision.

Japan Plans to Beam Solar Power from Space to Earth

The Sun never sets in space — and Japan has found a way to harness this unlimited energy.

Could This Saliva Test Catch Deadly Prostate Cancer Early?

Researchers say new genetic test detects aggressive cancers that PSA and MRIs often miss

This Tree Survives Lightning Strikes—and Uses Them to Kill Its Rivals

This rainforest giant thrives when its rivals burn

Engineers Made a Hologram You Can Actually Touch and It Feels Unreal

Users can grasp and manipulate 3D graphics in mid-air.

Musk's DOGE Fires Federal Office That Regulates Tesla's Self-Driving Cars

Mass firings hit regulators overseeing self-driving cars. How convenient.

A Rare 'Micromoon' Is Rising This Weekend and Most People Won’t Notice

Watch out for this weekend's full moon that's a little dimmer, a little smaller — and steeped in seasonal lore.