homehome Home chatchat Notifications


Tardigrades can survive being shot from a gun. What this means for alien life

The cute water bears could give scientists hints as to whether or not life can survive interplanetary travel on meteorites.

Tibi Puiu
May 21, 2021 @ 12:07 am

share Share

Microscope image of a tardigrade (Paramacrobiotus craterlaki) in moss. 

Despite their adorable appearance and microscopic size, tardigrades are some of the toughest creatures in the animal kingdom. They can survive without water for 10 years, in extreme pressures and temperatures, deadly UV radiation, and even in outer space. Even after they were frozen for 30 years, some thawed tardigrades were still alive and could even reproduce.

Now, scientists have pushed the limits of these extremophiles by shooting them out of a high-speed gas gun into an impact target. Remarkably, many survived — but only up to a point.

Although the experiment might sound cynical and random, there’s more to it than just proving how tough tardigrades are. One of the biggest questions in science is how life first appeared on this planet. One of the wildest theories suggests that microbes hitched a ride to our planet on meteorites and comets.

This theory of interplanetary transfer of life, known as panspermia, has never been proven but it is plausible enough that scientists have spent a considerable amount of time and funding to investigate it. For instance, researchers at Harvard and MIT teamed up with NASA to design and produce an instrument that can be sent to Mars and potentially detect DNA or more primitive RNA.

The topic was recently brought to scientists’ attention after Israel’s Beresheet probe crash landed on the moon in 2019, along with a cargo of tardigrades. The probe was obliterated, but some couldn’t help but wonder if the sturdy water bears made it out alive despite the rain of destruction.

Researchers at the University of Kent in the UK saw this as a challenge. They designed an experiment that would mimic the high-speed impact of a spacecraft by shooting the water bears as projectiles from a two-stage light gas gun. These guns are used by researchers to test the effects of high-velocity impacts, such as the effects of space debris impacting a satellite. As such, they can fire projectiles at much higher velocities than a normal gun that shoots bullets.

Tardigrades usually live for only a few months when fully active. But when short on water, they may curl up in a ball, entering the so-called “tun” state, named because it looks like a large barrel called a tun. By freezing the water bears, the researchers were able to activate the tun state — they were now ready to be fired like tiny cannonballs.

Six shots were fired onto a sand target, each shot containing a few frozen water bears with speeds ranging from 1,240 to 2,230 miles per hour. The water bears impacted the target at shock pressures between 0.61 and 1.31 GPa (gigapascals).

The tardigrades remarkably survived some of these impacts, up to velocities of 1,845 miles per hour (900 meters/second) and 1.14 GPa of pressure upon impact. More than that killed the tiny creatures. But even those that survived seem to have sustained internal damage since they took longer to thaw and recover than their counterparts that just sat in the lab’s freezer. It’s not yet clear if these battered tardigrades can reproduce.

If the Beresheet probe crashed into the moon at more than 1,845 miles per hour, then there are likely no more water bears left there. Likewise, most meteorites impact Earth at much higher velocities and shock pressures than measured by this experiment.

However, panspermia isn’t entirely down for the count. The researchers claim that up to 40% of the rock and debris that were shot into space by asteroid impacts in Earth’s early history billions of years ago would have reached the moon’s surface at speeds low enough for tardigrades to survive. Likewise, a similar journey could have been made between Mars and its moon Phobos.

Rather than debunking panspermia, these new findings serve to offer a potential upper bound for the kind of impacts life may survive. They could also prove useful in missions to Saturn’s Enceladus or Jupiter’s Europa, both icy moons that bear subsurface oceans. Although these oceans are obscured by ice dozens of miles thick, material from deep beneath the ice is ejected into space by huge plumes of water. A spacecraft flying through these sprinklers would have to collect samples at a speed much slower than the impact survival limit of tardigrades to ensure that any organisms, if any, survive the process.

The findings appeared in the journal Astrobiology.

share Share

Frozen Wonder: Ceres May Have Cooked Up the Right Recipe for Life Billions of Years Ago

If this dwarf planet supported life, it means there were many Earths in our solar system.

Are Cyborg Jellyfish the Next Step of Deep Ocean Exploration?

We still know very little about our oceans. Can jellyfish change that?

Can AI help us reduce hiring bias? It's possible, but it needs healthy human values around it

AI may promise fairer hiring, but new research shows it only reduces bias when paired with the right human judgment and diversity safeguards.

Hidden for over a century, a preserved Tasmanian Tiger head "found in a bucket" may bring the lost species back from extinction

Researchers recover vital RNA from Tasmanian tiger, pushing de-extinction closer to reality.

Island Nation Tuvalu Set to Become the First Country Lost to Climate Change. More Than 80% of the Population Apply to Relocate to Australia Under World's First 'Climate Visa'

Tuvalu will likely become the first nation to vanish because of climate change.

Archaeologists Discover 6,000 Year Old "Victory Pits" That Featured Mass Graves, Severed Limbs, and Torture

Ancient times weren't peaceful by any means.

Space Solar Panels Could Cut Europe’s Reliance on Land-Based Renewables by 80 Percent

A new study shows space solar panels could slash Europe’s energy costs by 2050.

A 5,000-Year-Old Cow Tooth Just Changed What We Know About Stonehenge

An ancient tooth reshapes what we know about the monument’s beginnings.

Astronomers See Inside The Core of a Dying Star For the First Time, Confirm How Heavy Atoms Are Made

An ‘extremely stripped supernova’ confirms the existence of a key feature of physicists’ models of how stars produce the elements that make up the Universe.

Scientists Master the Process For Better Chocolate and It’s Not in the Beans

Researchers finally control the fermentation process that can make or break chocolate.