homehome Home chatchat Notifications


Japan casts steel-like glass using levitation

Using a newly-developed production method, the Institute of Industrial Science at Tokyo University succeeded in producing a type of glass that rivals steel in hardness. The new material opens huge developmental lanes for any glass and glass-related product, from tableware to bulletproof glass.

Alexandru Micu
November 4, 2015 @ 12:02 pm

share Share

Using a newly-developed production method, the Institute of Industrial Science at Tokyo University succeeded in producing a type of glass that rivals steel in hardness. The new material opens huge developmental lanes for any glass and glass-related product, from tableware to bulletproof glass.

Steel-strong glass? That’s so metal!
Image via gizmodo

“We will establish a way to mass-produce the new material shortly,” said Atsunobu Masuno, assistant professor for the University. “We are looking to commercialize the technique within five years.”

Typical glass is usually made of silicon dioxide, with an added sprinkle of alumina (an aluminium oxide) thrown in to boost it’s hardness. However, there’s a limit to how strong it can be made traditionally — if you add too much alumina, it causes crystallization at the glass-container contact when the glass is prepared. Tokyo’s scientists devised an elegant solution to the problem — take out everything but the glass.

The mixing process is underpinned by a dash of tantalum powder and a containerless processing technique: they push the chemical components together at high pressure and temperature, then raise them into the air using pressurized oxygen gas and blast them with carbon dioxide lasers until they mix into glass — they named this the aerodynamic levitation furnace. The resulting material is transparent, colorless and very very tough, thanks to its 50 percent alumina content.

The glass underwent several tests for hardness, strength and elasticity. These showed the Young modulus was twice as high than that of typical types of glass — almost as high as that of steel and iron, the team reports. The study also notes that alumina glass made via this process can yield a product that’s thin and light or thick and heavy, and has excellent optical properties.

However, it’s not a wonder material: what those tests measure is the ability of a material, in this case the glass, to resist indentation by another object. The team reports that, in toying around with samples of the material and applying every force they could think of on them, they discovered they could generate radial cracks that propagate from a central point throughout the material — while being very very tough, in some respects it performs and behaves just as regular heavy duty industrial glass.

Still, glass that won’t shatter when i drop it? Glass that won’t scratch? Virtually unsearchable smartphone screens and bouncy beer bottles?

Japan will have the drunk student market all to themselves!

 

share Share

New Liquid Uranium Rocket Could Halve Trip to Mars

Liquid uranium rockets could make the Red Planet a six-month commute.

Scientists think they found evidence of a hidden planet beyond Neptune and they are calling it Planet Y

A planet more massive than Mercury could be lurking beyond the orbit of Pluto.

People Who Keep Score in Relationships Are More Likely to End Up Unhappy

A 13-year study shows that keeping score in love quietly chips away at happiness.

NASA invented wheels that never get punctured — and you can now buy them

Would you use this type of tire?

Does My Red Look Like Your Red? The Age-Old Question Just Got A Scientific Answer and It Changes How We Think About Color

Scientists found that our brains process colors in surprisingly similar ways.

Why Blue Eyes Aren’t Really Blue: The Surprising Reason Blue Eyes Are Actually an Optical Illusion

What if the piercing blue of someone’s eyes isn’t color at all, but a trick of light?

Meet the Bumpy Snailfish: An Adorable, Newly Discovered Deep Sea Species That Looks Like It Is Smiling

Bumpy, dark, and sleek—three newly described snailfish species reveal a world still unknown.

Scientists Just Found Arctic Algae That Can Move in Ice at –15°C

The algae at the bottom of the world are alive, mobile, and rewriting biology’s rulebook.

A 2,300-Year-Old Helmet from the Punic Wars Pulled From the Sea Tells the Story of the Battle That Made Rome an Empire

An underwater discovery sheds light on the bloody end of the First Punic War.

Scientists Hacked the Glue Gun Design to Print Bone Scaffolds Directly into Broken Legs (And It Works)

Researchers designed a printer to extrude special bone grafts directly into fractures during surgery.