homehome Home chatchat Notifications


Some epileptic seizures could be triggered by autoantibodies

It's good news for sufferers of epilepsy -- though novel treatments are still a while away.

Jordan Strickler
March 25, 2020 @ 5:27 pm

share Share

Epilepsy can have many origins such as a result of a brain injury or a stroke, it can be triggered by a tumor or even passed down along family lines. Now a new study published in the scientific journal Annals of Neurology by researchers at the University of Bonn has found another mechanism that might cause seizures.

Epilepsy is a disorder in which nerve cell activity in the brain is disturbed, causing seizures. (Image: Pixabay)

While it has been known that some forms of epilepsy are accompanied by inflammation of certain brain regions, the link between these inflammations and the seizures themselves hasn’t always been clear.

It is particularly dangerous when inflammatory reactions affect the hippocampus — a brain structure that plays an important role in memory processes as well as the development of emotions. This causes a condition coined limbic encephalitis, but it is still unclear exactly what processes trigger the condition. The scientists at Bonn have now found that autoantibodies are playing an important role.

Unlike normal antibodies, these autoantibodies are not directed against molecules that have entered the organism from outside, but against the body’s own structures (the prefix “auto” can be translated as “self”).

The Bonn study found these autoantibodies in the spinal fluid of epilepsy patients suffering from acute inflammation of the hippocampus. The autoantibody is directed against the protein drebrin. Drebrin ensures that the contact points (synapses) between nerve cells function correctly.

The problem with autoantibodies is that they act somewhat like a trojan horse.

Information processed in the brain is electrical, however, these synapses communicate via chemical messengers — the previously mentioned neurotransmitters. In response to an electrical pulse, the transmitter synapse emits transmitters that then dock to certain receptors of the receiver synapse, where they in turn also generate electrical pulses. The synaptic vesicles (the “packaging” of the neurotransmitters) are once again absorbed and then are recycled.

In experiments with cell cultures, the Bonn group was able to show that shortly after the addition of the autoantibody to the Petri dish, the neurons began to fire machine-gun-like rapid bursts of electrical impulses. In the human brain, this would then most likely result in an epileptic seizure.

“The autoantibody seems to use this route to sneak into the cell, as with a Trojan horse,” explains Becker’s colleague Prof. Dr. Susanne Schoch McGovern. “We know that this form of electrical excitation is contagious, so to speak. With nerve cells, which are interconnected to form a network, all the nerve cells involved suddenly start firing wildly.”

Besides learning about this new method of potential seizures, these results also give hope for new therapeutic approaches for epilepsy. As an example, active substances such as cortisone can suppress the immune system and thereby possibly also prevent the massive production of autoantibodies.

The researchers also elude that it may also be possible to intercept and incapacitate them specifically with certain drugs. However, they also believe there is still a long way to go before treatment becomes available.

Epilepsy affects both males and females of all races, and according to the Centers for Disease Control and Prevention, as of 2015, almost 40 million people globally suffered. According to a 2016 Lancet publication, the year prior resulted in 125,000 deaths from the condition, an increase from 112,000 in 1990. There are over 150,000 new cases every year and one-in-26 people in the U.S. will develop the disease at some point in their lives. Alexander the Great, Theodore Roosevelt, Napoleon Bonaparte, Neil Young, and Prince are some of the most well-known sufferers of epilepsy.

share Share

Chinese Student Got Rescued from Mount Fuji—Then Went Back for His Phone and Needed Saving Again

A student was saved two times in four days after ignoring warnings to stay off Mount Fuji.

The perfect pub crawl: mathematicians solve most efficient way to visit all 81,998 bars in South Korea

This is the longest pub crawl ever solved by scientists.

This Film Shaped Like Shark Skin Makes Planes More Aerodynamic and Saves Billions in Fuel

Mimicking shark skin may help aviation shed fuel—and carbon

China Just Made the World's Fastest Transistor and It Is Not Made of Silicon

The new transistor runs 40% faster and uses less power.

Ice Age Humans in Ukraine Were Masterful Fire Benders, New Study Shows

Ice Age humans mastered fire with astonishing precision.

The "Bone Collector" Caterpillar Disguises Itself With the Bodies of Its Victims and Lives in Spider Webs

This insect doesn't play with its food. It just wears it.

University of Zurich Researchers Secretly Deployed AI Bots on Reddit in Unauthorized Study

The revelation has sparked outrage across the internet.

Giant Brain Study Took Seven Years to Test the Two Biggest Theories of Consciousness. Here's What Scientists Found

Both came up short but the search for human consciousness continues.

The Cybertruck is all tricks and no truck, a musky Tesla fail

Tesla’s baking sheet on wheels rides fast in the recall lane toward a dead end where dysfunctional men gather.

British archaeologists find ancient coin horde "wrapped like a pasty"

Archaeologists discover 11th-century coin hoard, shedding light on a turbulent era.