homehome Home chatchat Notifications


Shark teeth found in Antarctica unlock mystery of Earth’s ancient climate cooling

Some 50 million years ago, the Earth shifted to a cooler climate. Here’s why

Fermin Koop
July 15, 2021 @ 12:18 pm

share Share

The Eocene was the hottest period in the past 50 million years. With temperatures some 13 °C hotter than today, no ice around the poles, and mammals just starting to take over the world, our planet was a very different environment. But something weird happened. Some 50 million years ago, the climate transitioned from a “greenhouse” to cooler “icehouse” conditions, which impacted the evolutionary history of flora and fauna. 

Teeth from an ancient shark could now help us understand what happened.

Image credit: Flickr/ NOAA

Researchers have worked on several theories about what drove this climate shift, some focusing on Antarctica due to its contiguity to tectonic gateways and amplified temperature effects at high latitudes. The tectonic theory notes that as the Australian and Antarctic tectonic plates were spreading apart, this produced increased volcanism and CO2 emissions.

The Antarctic also played a key role in the eventual cooling — once the oceans around it began to freeze, Antarctic waters sent cold water and icefloes There’s evidence, for example, that the Drake Passage and the Tasman Gateway (two now-icy passages around the Antarctic) widened and deepened during this time.

The wider and deeper passages would have been necessary for the waters of the major oceans to come together and the Antarctic Circumpolar Current to form, studies showed. That current, which currently flows around Antarctica, traps cold waters in the Southern Ocean, keeping Antarctica cold and frozen.

In a new study, researchers from the University of California analyzed the chemistry preserved in the teeth of the now-extinct sand tiger shark species Striatolamia macrota. The shark used to hunt in the waters off the Antarctic Peninsula tens of million years ago and left well-preserved fossil teeth in what’s now Seymour Island. 

“By studying the chemistry preserved in these shark teeth, my colleagues and I found evidence of when the Drake Passage opened, which allowed the waters of the Pacific and Atlantic oceans to mix, and what the water felt like at the time,” lead author Sora Kim wrote in a commentary. “The temperatures recorded in shark teeth are some of the warmest for Antarctic waters.”

Teeth filled with information

For the study, the researchers studied 400 teeth from Seymour Island from all ages of sharks, which lived between 45 million to 37 million years ago. 

Illustrations of sand tiger shark teeth used by the scientists. Image credits: Christina Spence Morgan

Sand tiger sharks have sharp teeth that protrude from their jaw to grasp prey. They have hundreds of teeth on multiple rows, and over a lifetime, they shed and regrow thousands of teeth. Each tooth contains important environmental information, which is encoded within its chemistry and preserved there over millions of years. Essentially, a tooth can serve as a proxy, telling researchers information about the waters in which it was formed.

The outer layer of the teeth is formed by an enamel-like layer, with oxygen atoms from the water the shark lived in. The researchers analyzed the oxygen to determine the temperature and salinity of the water and found that the Antarctic waters stayed warmer than previously estimated

“It’s possible the difference was between waters closer to the surface and deeper on the sea floor, or the sharks whose teeth we found may have spent part of their lives in South America,” Kim wrote. 

The modern-day analog of sand tiger sharks spends summer and early fall between coastal Massachusetts and Delaware. When the waters cool off, they migrate to North Carolina and Florida. The researchers believe that ancient sand tiger sharks also migrated when Antarctic waters cooled off, heading north to warmer waters.

Carbon dioxide concentrations in the teeth were 3-6 higher than today, which indicates the atmospheric levels of C02 were also much higher than they are today — which fits with an overall higher temperature.

Another finding came from the element neodymium, which adsorbs and replaces other elements in the outer enamel-like material of the tooth during early fossilization. Its analysis provided the researchers with the earliest chemical evidence of water flowing through the Drake Passage, which aligns with existing tectonic evidence. If conditions are stable, the neodymium would remain stable through the years, but if the neodymium composition does change, it means that there are changes in oceanography.

“The early timing of the Drake Passage opening, but the delayed cooling effect, indicates there are complex interactions between Earth’s systems that affect climate change,” Kim wrote.

Ultimately, although the sand tiger sharks went extinct, other relatives managed to adapt to the changing conditions. However, the current climate events are different from the ones in the Eocene, because they happen much faster and leave less time for adaption. In addition, the current events are also coupled with other stressors, like pollution and shrinking ecosystems.

The study was published in the journal Advance Earth and Space Science

share Share

A Soviet shuttle from the Space Race is about to fall uncontrollably from the sky

A ghost from time past is about to return to Earth. But it won't be smooth.

The world’s largest wildlife crossing is under construction in LA, and it’s no less than a miracle

But we need more of these massive wildlife crossings.

Mexico Will Give U.S. More Water to Avert More Tariffs

Droughts due to climate change are making Mexico increasingly water indebted to the USA.

The Fat Around Your Thighs Might Be Affecting Your Mental Health

New research finds that where fat is stored—not just how much you have—might shape your mood.

Plants and Vegetables Can Breathe In Microplastics Through Their Leaves and It Is Already in the Food We Eat

Leaves absorb airborne microplastics, offering a new route into the food chain.

New Quantum Navigation System Promises a Backup to GPS — and It’s 50 Times More Accurate

An Australian startup’s device uses Earth's magnetic field to navigate with quantum precision.

This Solar-Powered Device Sucks CO2 From the Air—and Turns It Into Fuel

Researchers harness sunlight to convert CO2 into sustainable fuel.

Japan Plans to Beam Solar Power from Space to Earth

The Sun never sets in space — and Japan has found a way to harness this unlimited energy.

Scientists Create a 'Power Bar' for Bees to Replace Pollen and Keep Colonies Alive Without Flowers

Researchers unveil a man-made “Power Bar” that could replace pollen for stressed honey bee colonies.

Ancient tree rings reveal the hidden reason Rome’s grip on Britain failed

Three scorching summers in antiquity triggered revolt, invasion, and a turning point in British history.