homehome Home chatchat Notifications


This Tiny Robot Swims Like a Worm — and Could Explore Alien Oceans

Marine flatworms have perfected smooth, undulating motion over millions of years of evolution. Now, scientists have taken inspiration to create a highly agile robot.

Mihai Andrei
February 25, 2025 @ 5:57 pm

share Share

Marine flatworms are cool. Hear me out. They’ve mastered the art of smooth undulating motion and perfected it over millions of years of evolution. They can glide efficiently through water by undulating their thin, flat bodies in an almost ethereal way. Our best robots are nowhere near that performance — but they’re making progress.

Inspired by these natural swimmers, scientists at the École Polytechnique Fédérale de Lausanne (EPFL) have designed a highly agile, untethered robotic swimmer that mimics their movements. This centimeter-scale, soft-bodied robot could be used in environmental monitoring, aquaculture, and maybe even for exploring alien worlds.

Inspiration From Nature

Swimming robots aren’t a novelty. They’re already used to map pollution, monitor water quality, and study aquatic ecosystems like corals and lakes. But these devices typically use noisy propellers that are disturbing to wildlife, and they’re not very efficient either. Such robots are bulky and find it hard to maneuver around the natural chaos in these environments (like plants, animals, or debris).

That’s why robot researchers have long aimed to mimic the efficiency of nature, particularly in aquatic environments. The new robot, which basically looks like a PCB board with wings, ranges from 25 mm to 45 mm in length. And it’s a game-changer. It achieves high-speed movement both in tethered (12 cm/s) and untethered (5.1 cm/s) modes, demonstrating unmatched agility in its size category.

swimming robot in water
A miniature swimming robot inspired by marine flatworms. Image credits: EPFL-LMTS

Unlike many previous designs, which relied on miniature DC electrical motors or hydrogels, this robot integrates soft electrohydraulic actuators. These are flexible, capacitive devices that use an applied electric field to create Maxwell stress, causing the electrodes to zip together and displace a liquid dielectric, resulting in controlled bending or undulating motion. These actuators provide a powerful yet lightweight propulsion system. They consume less than 35 mW of power and function for over 750,000 cycles before showing signs of wear.

“In 2020, our team demonstrated autonomous insect-scale crawling robots, but making untethered ultra-thin robots for aquatic environments is a whole new challenge,” says EPFL Soft Transducers Lab head Herbert Shea. We had to start from scratch, developing more powerful soft actuators, new undulating locomotion strategies, and compact high-voltage electronics.

Biomimicry and Beyond

Nature has already solved many of the engineering problems associated with aquatic locomotion. The EPFL researchers took inspiration from polyclads (marine flatworms), which use continuous undulations to glide effortlessly through water. Their robot replicates this movement by generating over 1.5 wavelengths along its fins, making it more stable and efficient than most artificial undulatory swimmers.

But the key innovation comes from geometry more than physics.

a pink-black marine worm that the swimming robot mimics
A marine flatworm, Pseudobiceros gloriosus. Image via Wiki Commons.

The robot’s flat structure is what makes all the difference. Measuring only 500 micrometers thick, it floats on the water surface due to surface tension, allowing it to carry additional weight with the aid of buoyant elements. The use of soft electrohydraulic actuators enables independent control of each fin, facilitating precise directional movement — a crucial advantage for applications requiring complex navigation.

The design doesn’t stop at imitating nature, however. The robot can flap its fins ten times faster than fish, achieving better directional control.

“Our design doesn’t simply replicate nature; it goes beyond what natural organisms can achieve,” explains former EPFL researcher Florian Hartmann, now a research group leader at the Max Planck Institute for Intelligent Systems in Stuttgart, Germany.

A miniature swimming robot inspired by marine flatworms. Credit: EPFL-LMTS

Real-World Applications

These robots could essentially function like underwater drones, whether to detect pollutants, microplastics, or harmful algal blooms, or to study aquatic life with minimal disturbance.

As researchers refine this technology, we may soon see swarms of these miniature robots autonomously patrolling lakes, rivers, and oceans, collecting data, and assisting in environmental preservation efforts.

Although the researchers don’t mention this directly, we could even see this type of technology deployed on other worlds. Both Enceladus (a moon of Saturn) and Europa (a moon of Jupiter) are believed to harbor vast subsurface oceans beneath their thick ice crusts. These saltwater oceans, kept liquid by gravitational forces that generate heat, are among the most promising places in the solar system to look for extraterrestrial life, but we’d need some technology to explore them. Perhaps, something that moves like a worm.

The study was published in Science Robotics.

share Share

Mexico Will Give U.S. More Water to Avert More Tariffs

Droughts due to climate change are making Mexico increasingly water indebted to the USA.

Chinese Student Got Rescued from Mount Fuji—Then Went Back for His Phone and Needed Saving Again

A student was saved two times in four days after ignoring warnings to stay off Mount Fuji.

The perfect pub crawl: mathematicians solve most efficient way to visit all 81,998 bars in South Korea

This is the longest pub crawl ever solved by scientists.

This Film Shaped Like Shark Skin Makes Planes More Aerodynamic and Saves Billions in Fuel

Mimicking shark skin may help aviation shed fuel—and carbon

China Just Made the World's Fastest Transistor and It Is Not Made of Silicon

The new transistor runs 40% faster and uses less power.

Ice Age Humans in Ukraine Were Masterful Fire Benders, New Study Shows

Ice Age humans mastered fire with astonishing precision.

The "Bone Collector" Caterpillar Disguises Itself With the Bodies of Its Victims and Lives in Spider Webs

This insect doesn't play with its food. It just wears it.

University of Zurich Researchers Secretly Deployed AI Bots on Reddit in Unauthorized Study

The revelation has sparked outrage across the internet.

Giant Brain Study Took Seven Years to Test the Two Biggest Theories of Consciousness. Here's What Scientists Found

Both came up short but the search for human consciousness continues.

The Cybertruck is all tricks and no truck, a musky Tesla fail

Tesla’s baking sheet on wheels rides fast in the recall lane toward a dead end where dysfunctional men gather.